Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 16(3): 2438-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455653

RESUMO

The highly pathogenic avian influenza (HPAI) virus subtype H5N1 has been found to be the most virulent and deadliest virus strain, with capability of interspecies transmission to human infection. Most human HPAI H5N1 cases were diagnosed late in their illnesses for medical care, resulting in severe complications that led to death. In this study, a novel graphene-enhanced electrochemical DNA biosensor had been fabricated for the detection of polymerase chain reaction (PCR) amplicon derived from the haemagglutinin (H5) gene of the HPAI. The graphene-enhanced DNA biosensor showed excellent linear correlation between PCR amplicon concentration and amperometric signal with a correlation coefficient, r2 of 0.9987. The amperometric response of the proposed biosensor was compared with conventional gel electrophoresis while the feasibility of the proposed sandwich sensing platform was verified via dot blot assay. The results obtained indicate that the electrochemical DNA biosensing assay is significantly more sensitive (P < 0.05) and time efficient. This work serves as a proof of concept in hopes for further development of the graphene enhanced electrochemical DNA biosensor into a portable, on-site screening platform for point-of-care detection of various pathogens.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas/instrumentação , Genes Virais , Virus da Influenza A Subtipo H5N1/genética , Corantes Fluorescentes , Limite de Detecção , Reação em Cadeia da Polimerase , Espectrometria por Raios X
2.
Chemosphere ; 362: 142537, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844101

RESUMO

The discharge of heavy metals into the environment has adversely affected the aquatic ecosystem due to their toxic and non-biodegradable nature. In this research, a three-dimensional graphene oxide/carboxymethylcellulose/aluminium sulphate (GOCAS) aerogel was synthesised and evaluated as a novel means for lead and zinc removal. The GOCAS aerogel was prepared via ice-templating of graphene oxide with carboxymethylcellulose and aluminium sulphate as the crosslinking and functionalisation additives. Characterisation of the aerogel by various analytical techniques confirmed the successful integration of the chemical additives. The hydroxyl and sulphate groups in the aerogel were found to participate in the adsorption of both metals. The equilibrium of lead adsorption was found to correlate well to the Freundlich isotherm, while zinc adsorption fitted closely the Langmuir isotherm. The kinetic adsorption behaviour of both metals was best described as pseudo-second-order. The interactive influences of concentration, temperature, contact time and adsorbent dose on the metal removal were explored by a central composite design, and the optimum adsorption capacity for lead was determined to be 138.7 mg/g at a GOCAS dose of 20 mg, initial concentration of 100 mg/L, temperature of 50 °C and contact time of 45 min. The optimum adsorption capacity for zinc was 52.69 mg/g at 30 mg, 65 mg/L, 45 °C and 40 min. Furthermore, regeneration studies with hydrochloric acid eluant were successfully conducted for up to four adsorption-desorption cycles. Overall, this work demonstrates that GOCAS aerogel is a viable nanosorbent for the adsorption of lead and zinc from water systems.

3.
Mater Sci Eng C Mater Biol Appl ; 100: 388-395, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948075

RESUMO

Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 µM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 µM, respectively with a sensitivity value of 0.133 µΑ·µM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.


Assuntos
Carbono/química , Cobalto/química , Técnicas Eletroquímicas/métodos , Vidro/química , Grafite/química , Nanocompostos/química , Óxidos/química , Serotonina/análise , Catálise , Eletrodos , Nanocompostos/ultraestrutura , Oxirredução , Análise Espectral Raman , Difração de Raios X
4.
Bioresour Technol ; 274: 134-144, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502604

RESUMO

Graphene oxide/chitosan aerogel (GOCA) was prepared by a facile ice-templating technique without using any cross-linking reagent for metanil yellow dye sequestration. The adsorption performance of GOCA was investigated by varying the adsorbent mass, shaking speed, initial pH, contact time, concentration and temperature. The combined effects of adsorption parameters and the optimum conditions for dye removal were determined by response surface methodology. GOCA exhibited large removal efficiencies (91.5-96.4%) over a wide pH range (3-8) and a high adsorption capacity of 430.99 mg/g at 8 mg adsorbent mass, 400 mg/L concentration, 35.19 min contact time and 175 rpm shaking speed. The adsorption equilibrium was best represented by the Langmuir model. GOCA could be easily separated after adsorption and regenerated for re-use in 5 adsorption-desorption cycles thereby maintaining 80% of its adsorption capability. The relatively high adsorption and regeneration capabilities of GOCA render it an attractive adsorbent for treatment of azo dye-polluted water.


Assuntos
Compostos Azo/química , Quitosana/química , Grafite/química , Adsorção , Corantes/química , Géis/química , Gelo
5.
J Mater Chem B ; 6(8): 1195-1206, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254180

RESUMO

Highly sensitive and selective immunosensors that can detect disease biomarkers at ultra-low levels in early stages are urgently needed to reduce mortality risks. A facile and efficient approach using sonochemical-assisted solvent graphene exfoliation and a hydrothermal synthesis method has been used to prepare graphene/titanium dioxide (G/TiO2) nanocomposites. Nanocomposites containing different ratios of graphene and TiO2 precursors were prepared to determine the optimum composition of G/TiO2 that has the highest conductivity and electrocatalytic properties. Characterisation methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and high resolution TEM (HRTEM) were used to study the crystallinity, surface characteristics, elemental composition, and morphology of the synthesised nanocomposites. The synthesised materials were also confirmed via Raman spectroscopy. Using ferricyanide as the redox active probe, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses indicated that 1 : 8 ratio of G/TiO2 exhibited the best current response and the lowest charge transfer resistance (Rct) of 1525 Ω. The potential of G/TiO2 for electrochemical sensing application was investigated using hydrogen peroxide (H2O2), a by-product of most enzymatic processes, as the analyte of interest. The sensitivity of the sensor towards H2O2 was 0.557 µA mM-1, with a limit of detection (LOD) at 56.89 µM. An in vitro cell proliferation assay was carried out to investigate the biocompatibility of the nanocomposites. The half-maximal inhibitory concentration (IC50) values obtained were >500 µg ml-1 for human lung fibroblasts (MRC5) and 5-25 µg ml-1 for human skin cells (HaCat).

6.
Biosens Bioelectron ; 94: 365-373, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28319904

RESUMO

An efficient electrochemical impedance genosensing platform has been constructed based on graphene/zinc oxide nanocomposite produced via a facile and green approach. Highly pristine graphene was synthesised from graphite through liquid phase sonication and then mixed with zinc acetate hexahydrate for the synthesis of graphene/zinc oxide nanocomposite by solvothermal growth. The as-synthesised graphene/zinc oxide nanocomposite was characterised with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffractometry (XRD) to evaluate its morphology, crystallinity, composition and purity. An amino-modified single stranded DNA oligonucleotide probe synthesised based on complementary Coconut Cadang-Cadang Viroid (CCCVd) RNA sequence, was covalently bonded onto the surface of graphene/zinc oxide nanocomposite by the bio-linker 1-pyrenebutyric acid N-hydroxysuccinimide ester. The hybridisation events were monitored by electrochemical impedance spectroscopy (EIS). Under optimised sensing conditions, the single stranded CCCVd RNA oligonucleotide target could be quantified in a wide range of 1.0×10-11M to 1.0×10-6 with good linearity (R =0.9927), high sensitivity with low detection limit of 4.3×10-12M. Differential pulse voltammetry (DPV) was also performed for the estimation of nucleic acid density on the graphene/zinc oxide nanocomposite-modified sensing platform. The current work demonstrates an important advancement towards the development of a sensitive detection assay for various diseases involving RNA agents such as CCCVd in the future.


Assuntos
Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Vírus de Plantas/isolamento & purificação , RNA Viral/isolamento & purificação , Sequência de Bases/genética , DNA de Cadeia Simples/genética , Espectroscopia Dielétrica , Grafite/química , Nanocompostos/química , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , Vírus de Plantas/genética , RNA Viral/genética , Óxido de Zinco/química
7.
Anal Chim Acta ; 903: 131-41, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26709306

RESUMO

Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 µAmM(-1) with a limit of detection of 7.4357 µM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis.


Assuntos
Técnicas Biossensoriais , Grafite/química , Nanocompostos , Óxido de Zinco/química , Microscopia Eletrônica de Varredura
8.
Colloids Surf B Biointerfaces ; 148: 392-401, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639489

RESUMO

Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.


Assuntos
Anti-Infecciosos/farmacologia , Incrustação Biológica/prevenção & controle , Grafite/química , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/química , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Halomonas/efeitos dos fármacos , Halomonas/fisiologia , Nanopartículas Metálicas/ultraestrutura , Microalgas/efeitos dos fármacos , Microalgas/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reprodutibilidade dos Testes , Água do Mar/microbiologia , Análise Espectral Raman , Difração de Raios X
9.
Nanoscale Res Lett ; 8(1): 428, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24134646

RESUMO

A microstructure deformation of indium oxide (In2O3) nanoparticles by an in situ thermal radiation treatment in nitrous oxide plasma was investigated. The In2O3 nanoparticles were completely transformed into nanostructured In2O3 films upon 10 min of treatment time. The treated In2O3 nanoparticle sample showed improvement in crystallinity while maintaining a large surface area of nanostructure morphology. The direct transition optical absorption at higher photon energy and the electrical conductivity of the In2O3 nanoparticles were significantly enhanced by the treatment.

10.
Bioresour Technol ; 102(15): 7237-43, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21620692

RESUMO

Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.


Assuntos
Ácido Cítrico/química , Hibiscus/química , Azul de Metileno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Soluções , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA