Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neuroinform ; 17: 1122470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025550

RESUMO

In this study, we explore the simulation setup in computational neuroscience. We use GENESIS, a general purpose simulation engine for sub-cellular components and biochemical reactions, realistic neuron models, large neural networks, and system-level models. GENESIS supports developing and running computer simulations but leaves a gap for setting up today's larger and more complex models. The field of realistic models of brain networks has overgrown the simplicity of earliest models. The challenges include managing the complexity of software dependencies and various models, setting up model parameter values, storing the input parameters alongside the results, and providing execution statistics. Moreover, in the high performance computing (HPC) context, public cloud resources are becoming an alternative to the expensive on-premises clusters. We present Neural Simulation Pipeline (NSP), which facilitates the large-scale computer simulations and their deployment to multiple computing infrastructures using the infrastructure as the code (IaC) containerization approach. The authors demonstrate the effectiveness of NSP in a pattern recognition task programmed with GENESIS, through a custom-built visual system, called RetNet(8 × 5,1) that uses biologically plausible Hodgkin-Huxley spiking neurons. We evaluate the pipeline by performing 54 simulations executed on-premise, at the Hasso Plattner Institute's (HPI) Future Service-Oriented Computing (SOC) Lab, and through the Amazon Web Services (AWS), the biggest public cloud service provider in the world. We report on the non-containerized and containerized execution with Docker, as well as present the cost per simulation in AWS. The results show that our neural simulation pipeline can reduce entry barriers to neural simulations, making them more practical and cost-effective.

2.
Front Psychol ; 11: 623237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643116

RESUMO

Dementia, a prevalent disorder of the brain, has negative effects on individuals and society. This paper concerns using Spontaneous Speech (ADReSS) Challenge of Interspeech 2020 to classify Alzheimer's dementia. We used (1) VGGish, a deep, pretrained, Tensorflow model as an audio feature extractor, and Scikit-learn classifiers to detect signs of dementia in speech. Three classifiers (LinearSVM, Perceptron, 1NN) were 59.1% accurate, which was 3% above the best-performing baseline models trained on the acoustic features used in the challenge. We also proposed (2) DemCNN, a new PyTorch raw waveform-based convolutional neural network model that was 63.6% accurate, 7% more accurate then the best-performing baseline linear discriminant analysis model. We discovered that audio transfer learning with a pretrained VGGish feature extractor performs better than the baseline approach using automatically extracted acoustic features. Our DepCNN exhibits good generalization capabilities. Both methods presented in this paper offer progress toward new, innovative, and more effective computer-based screening of dementia through spontaneous speech.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA