Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276680

RESUMO

Since the 2000s, sporadic outbreaks of whooping cough have been reported in advanced countries, where the acellular pertussis vaccination rate is relatively high, and in developing countries. Small-scale whooping cough has also continued in many countries, due in part to the waning of immune protection after childhood vaccination, necessitating the development of an improved pertussis vaccine and vaccination program. Currently, two different production platforms are being actively pursued in Korea; one is based on the aP (acellular pertussis) vaccine purified from B. pertussis containing pertussis toxoid (PT), filamentous hemagglutin (FHA) and pertactin (PRN), and the other is based on the recombinant aP (raP), containing genetically detoxified pertussis toxin ADP-ribosyltransferase subunit 1 (PtxS1), FHA, and PRN domain, expressed and purified from recombinant E. coli. aP components were further combined with diphtheria and tetanus vaccine components as a prototype DTaP vaccine by GC Pharma (GC DTaP vaccine). We evaluated and compared the immunogenicity and the protective efficacy of aP and raP vaccines in an experimental murine challenge model: humoral immunity in serum, IgA secretion in nasal lavage, bacterial clearance after challenge, PTx (pertussis toxin) CHO cell neutralization titer, cytokine secretion in spleen single cell, and tissue resident memory CD4+ T cell (CD4+ TRM cell) in lung tissues. In humoral immunogenicity, GC DTaP vaccines showed high titers for PT and PRN and showed similar patterns in nasal lavage and IL-5 cytokine secretions. The GC DTaP vaccine and the control vaccine showed equivalent results in bacterial clearance after challenge, PTx CHO cell neutralization assay, and CD4+ TRM cell. In contrast, the recombinant raP vaccine exhibited strong antibody responses for FHA and PRN, albeit with low antibody level of PT and low titer in PTx CHO neutralization assay, as compared to control and GC DTaP vaccines. The raP vaccine provided a sterile lung bacterial clearance comparable to a commercial control vaccine after the experimental challenge in murine model. Moreover, raP exhibited a strong cytokine response and CD4+ TRM cell in lung tissue, comparable or superior to the experimental and commercial DTaP vaccinated groups. Contingent on improving the biophysical stability and humoral response to PT, the raP vaccine warrants further development as an effective alternative to aP vaccines for the control of a pertussis outbreak.

2.
Clin Exp Vaccine Res ; 13(2): 155-165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38752005

RESUMO

Purpose: Pertussis bacteria have many pathogenic and virulent antigens and severe adverse reactions have occurred when using inactivated whole-cell pertussis vaccines. Therefore, inactivated acellular pertussis (aP) vaccines and genetically detoxified recombinant pertussis (rP) vaccines are being developed. The aim of this study was to assess the safety profile of a novel rP vaccine under development in comparison to commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccines. Materials and Methods: The two positive control DTaP vaccines (two- and tri-components aP vaccines) and two experimental recombinant DTaP (rDTaP) vaccine (two- and tri-components aP vaccines adsorbed to either aluminum hydroxide or purified oat beta-glucan) were used. Temperature histamine sensitization test (HIST), indirect Chinese hamster ovary (CHO) cell cluster assay, mouse-weight-gain (MWG) test, leukocytosis promoting (LP) test, and intramuscular inflammatory cytokine assay of the injection site performed for safety assessments. Results: HIST results showed absence of residual pertussis toxin (PTx) in both control and experimental DTaP vaccine groups, whereas in groups immunized with tri-components vaccines, the experimental tri-components rDTaP absorbed to alum showed an ultra-small amount of 0.0066 IU/mL. CHO cell clustering was observed from 4 IU/mL in all groups. LP tests showed that neutrophils and lymphocytes were in the normal range in all groups immunized with the two components vaccine. However, in the tri-components control DTaP vaccine group, as well as two- and tri-components rDTaP with beta-glucan group, a higher monocyte count was observed 3 days after vaccination, although less than 2 times the normal range. In the MWG test, both groups showed changes less than 20% in body temperature and body weight before the after the final immunizations. Inflammatory cytokines within the muscle at the injection site on day 3 after intramuscular injection revealed no significant response in all groups. Conclusion: There were no findings associated with residual PTx, and no significant differences in both local and systemic adverse reactions in the novel rDTaP vaccine compared to existing available DTaP vaccines. The results suggest that the novel rDTaP vaccine is safe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA