Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Geochem Health ; 43(10): 3953-3966, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33768350

RESUMO

Mine waste from abandoned mines poses a risk to soil ecosystems due to the dispersion of arsenic (As) in the mine waste to the nearby soil environment. Because the bioavailability of As varies depending on the As chemical fraction and exposure conditions, chemical assessment of As fractions in soil around mine waste is essential to understand their impact on soil ecosystem. Here, six sites around the mine waste were selected for investigating toxic effects of As-contaminant soil on Collembola community. To measure the As chemical fraction in soil and bioavailability, Wenzel sequential extraction employed. Meanwhile, the collembolans that live in each sampling site were identified at the species level, and the characteristics and composition of the collembola community were investigated. The mobility fraction (F1 + F2 + F3; MF) was related to the risk to the collembolan community, and the adverse impact of high MF appeared to lead to a decrease in abundance, richness, and Shannon index. According to non-metric multidimensional scaling analysis, F1, F2, F3, and pH were shown as the significant factor explaining the NMDS space. Especially, the sampling site with the highest concentration of F3 showed statistically different species composition from the other sites. In the case of As-contaminated soil around the old mine waste, the toxic effects of the remaining F3 in soil, as well as that of F1 and F2, should be fully considered. This study suggested that collembolan community could be used for understanding the impact of bioavailable As fraction in the old abandoned mine area.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Ecossistema , Mineração , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Ecotoxicol Environ Saf ; 173: 305-313, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30784793

RESUMO

The accumulation of metalloid elements during transfer from contaminated soil to higher trophic levels may potentially result in the exposure of parasitic arthropods to toxic concentrations of these elements. This study examined the transfer of arsenate (As(V)) to aphids (Myzus persicae) from pepper plants cultivated in As(V) contaminated soils of two concentrations (2 and 6 mg As(V)/kg dry soil), and the subsequent biological effects on the aphid parasitoid, Aphidius colemani. Results showed that considerable quantities of As(V) were transferred to the plant in a concentration-dependent manner and were partitioned in the plant parts in the order of roots > stems > leaves. The accumulation of As(V) in the aphids increased with the concentrations in the plants; however, the transfer coefficient of As(V) from leaf to aphid was relatively similar and constant (0.07-0.08) at both soil As(V) concentration levels. Increased levels of As(V) significantly affected fecundity and honeydew production in aphids, but survival and developmental time were unaffected. Fecundity (mummification rate) of the parasitoid was not impaired by host As(V) contamination; however, vitality (eclosion rate) was significantly affected. Results are discussed in relation to possible ecological risks posed by the transfer of soil As(V) via the plant-arthropod system to parasitoid arthropods in agroecosystems.


Assuntos
Afídeos/metabolismo , Arseniatos/metabolismo , Capsicum/metabolismo , Cadeia Alimentar , Poluentes do Solo/metabolismo , Vespas/metabolismo , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/parasitologia , Arseniatos/administração & dosagem , Relação Dose-Resposta a Droga , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Ninfa/parasitologia , Poluentes do Solo/administração & dosagem
3.
Environ Geochem Health ; 40(6): 2773-2784, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29981014

RESUMO

Tebufenozide is an insect growth regulator used to control pest caterpillar populations. As an ecdysone agonist, tebufenozide is equally toxic to several non-target arthropod species, binding the receptor sites of the molting hormone 20-hydroxyecdysone and causing premature and lethal molting. In this study, the toxic effects of tebufenozide were assessed, and biomarkers of tebufenozide exposure were identified, in the non-target soil collembolan species Yuukianura szeptyckii. Adult mortality and reproduction in Y. szeptyckii exposed to tebufenozide were evaluated after 28 days of exposure and were used to calculate LC50 and EC50, respectively. The LC50 could not be determined, because the mortality values observed were below 50%, even when exposed to the highest concentration tested (700 mg/kg), but the EC50 was 95.5 mg/kg. Effects on hatching and molting rates were evaluated using compressed soils, to prevent experimental individuals from burrowing; thus, all eggs and exuviae were detectable on the soil surface. Significant negative effects of tebufenozide exposure on the hatching rate and molting frequency were observed only at the highest concentration tested (700 mg/kg). Proteomic analyses were conducted to detect the cryptic effects of toxicity in adult collembolans exposed for 28 days to 43.8 mg/kg of tebufenozide, a concentration at which no toxicity effects were observed. The production rates of two ribosomal proteins, as well as proteins involved in apoptotic cell signaling, were higher in collembolans exposed to tebufenozide than in the control group. However, the production of proteins involved in glycolysis and energy production was downregulated. Therefore, the ecotoxicoproteomic approach is a promising tool for measuring the cryptic effects of tebufenozide exposure in Y. szeptyckii at low concentrations.


Assuntos
Proteínas de Artrópodes/genética , Artrópodes/efeitos dos fármacos , Hidrazinas/toxicidade , Inseticidas/toxicidade , Características de História de Vida , Proteoma/genética , Animais , Proteínas de Artrópodes/metabolismo , Artrópodes/fisiologia , Biomarcadores/análise , Proteoma/metabolismo
4.
Arch Environ Contam Toxicol ; 72(1): 142-152, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27858106

RESUMO

Bioavailability and toxicity of Cu, Mn, and Ni in Paronychiurus kimi were investigated after 28 days of exposure to OECD artificial soil spiked with these metals. Uptake and effect of Cu, Mn, and Ni on the reproduction of P. kimi were related to different metal fractions (water-soluble, 0.01 M CaCl2-extractable or porewater metal concentrations). Cu and Mn concentrations in P. kimi increased with increasing Cu and Mn concentrations in the soil, while Ni contents in P. kimi reached a plateau at a concentration higher than 200 mg/kg in soil. Both uptake and juvenile production related well to different metal fractions, suggesting that these metal fractions are suitable for assessing bioavailability and toxicity of metals in P. kimi. When toxicity for reproduction was compared, as reflected by EC50 values, the order of metal toxicity varied depending upon how exposure concentration was expressed. Moreover, the results of proteomic analysis showed that several proteins involved in the immune system, neuronal outgrowth, and metal ion binding were up-regulated in P. kimi following short-term (7 days) exposure to sublethal level (corresponding to 50% of the EC50) of Cu, Mn, or Ni, respectively. This suggests that the ecotoxicoproteomic approach seems to be a promising tool for early exposure warnings below which significant adverse effects are unlikely to occur. This study demonstrated that a combination of chemical and biological measures can provide information about metal bioavailability and toxicity to which P. kimi has been exposed.


Assuntos
Artrópodes/efeitos dos fármacos , Exposição Ambiental , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Animais , Disponibilidade Biológica , Biomarcadores , Cobre/metabolismo , Cobre/toxicidade , Monitoramento Ambiental , Manganês/metabolismo , Manganês/toxicidade , Níquel/metabolismo , Níquel/toxicidade
5.
Ecotoxicol Environ Saf ; 132: 164-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27318557

RESUMO

The joint toxic effects of binary metal mixtures of copper (Cu), manganese (Mn) and nickel (Ni) on reproduction of Paronhchiurus kimi (Lee) was evaluated using a toxic unit (TU) approach by judging additivity across a range of effect levels (10-90%). For all metal mixtures, the joint toxic effects of metal mixtures on reproduction of P. kimi decreased in a TU-dependent manner. The joint toxic effects of metal mixtures also changed from less than additive to more than additive at an effect level lower than or equal to 50%, while a more than additive toxic effects were apparent at higher effect levels. These results indicate that the joint toxicity of metal mixtures is substantially different from that of individual metals based on additivity. Moreover, the close relationship of toxicity to effect level suggests that it is necessary to encompass a whole range of effect levels rather than a specific effect level when judging mixture toxicity. In conclusion, the less than additive toxicity at low effect levels suggests that the additivity assumption is sufficiently conservative to warrant predicting joint toxicity of metal mixtures, which may give an additional margin of safety when setting soil quality standards for ecological risk assessment.


Assuntos
Artrópodes/efeitos dos fármacos , Cobre/toxicidade , Manganês/toxicidade , Níquel/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/fisiologia , Reprodução/efeitos dos fármacos
6.
Int J Biometeorol ; 60(1): 53-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25957865

RESUMO

Climate change could shift the phenology of insects and plants and alter their linkage in space and time. We examined the synchrony of rice and its insect pest, Scotinophara lurida (Burmeister), under the representative concentration pathways (RCP) 8.5 climate change scenario by comparing the mean spring immigration time of overwintered S. lurida with the mean rice transplanting times in Korea. The immigration time of S. lurida was estimated using an overwintered adult flight model. The rice transplanting time of three cultivars (early, medium, and medium-late maturing) was estimated by forecasting the optimal cultivation period using leaf appearance and final leaf number models. A temperature increase significantly advanced the 99% immigration time of S. lurida from Julian day 192.1 in the 2000s to 178.4 in the 2050s and 163.1 in the 2090s. In contrast, rice transplanting time was significantly delayed in the early-maturing cultivar from day 141.2 in the 2000s to 166.7 in the 2050s and 190.6 in the 2090s, in the medium-maturing cultivar from day 130.6 in the 2000s to 156.6 in the 2050s and 184.7 in the 2090s, and in the medium-late maturing cultivar from day 128.5 in 2000s to 152.9 in the 2050s and 182.3 in the 2090s. These simulation results predict a significant future phenological asynchrony between S. lurida and rice in Korea.


Assuntos
Mudança Climática , Hemípteros/fisiologia , Modelos Teóricos , Oryza/crescimento & desenvolvimento , Estações do Ano , Animais , Folhas de Planta/crescimento & desenvolvimento , República da Coreia , Temperatura
7.
Exp Appl Acarol ; 65(1): 55-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25091123

RESUMO

Recent studies have revealed diverse patterns of cytoplasmic incompatibility (CI) induced by Wolbachia in the two spotted spider mite (Tetranychus urticae Koch). The mechanism of CI consists of two steps: modification (mod) of sperm of infected males and the rescue (resc) of these chromosomes by Wolbachia in the egg, which results in female embryonic mortality (FM), male development (MD) or no CI. Our study reports that Wolbachia infections were highly prevalent infecting all T. urticae populations from various crops in 14 commercial greenhouses in Korea, with two Wolbachia strains expressing distinctive phenotypic effects on hosts. Analyses for wsp gene sequences obtained from collected mite populations revealed all sequences were categorized into two groups (group W1 and W2) discriminated by three diagnostic nucleotides while all Wolbachia strains belonged to the subgroup Ori in Wolbachia supergroup B. Host plants of each mite population were also generally correlated this grouping. Various mating experiments with two mite populations from each group showed that CI patterns and host plants of the mite populations were completely matched with the grouping; no CI (mod(-)resc(+)) for group W1 and mixed pattern of FM and MD (mod(+)resc(+)) for group W2. No distinct changes in fecundity or sex ratio due to Wolbachia infections were observed in four mite populations regardless of Wolbachia grouping. Our study suggests a potential correlation between phenotypic effect of Wolbachia infection and its genetic diversity associated with host plants in Korean mite populations.


Assuntos
Tetranychidae/microbiologia , Wolbachia/fisiologia , Distribuição Animal , Animais , Clonagem Molecular , DNA Bacteriano/genética , Feminino , Masculino , Filogenia , Ploidias , Reação em Cadeia da Polimerase , Reprodução , República da Coreia , Tetranychidae/genética , Wolbachia/genética
8.
Environ Geochem Health ; 37(6): 943-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25920560

RESUMO

Polycyclic aromatic hydrocarbon (PAH) compounds are persistent, carcinogenic, and mutagenic. When PAHs enter agricultural soils through sewage sludge, they pose an environmental risk to soil organisms, including earthworms. Therefore, we aimed to determine the toxic effects of PAHs on earthworms. Five PAHs were used: fluorene, anthracene, phenanthrene, fluoranthene, and pyrene. Only fluorene and phenanthrene exhibited toxicity (LC50 values 394.09 and 114.02 g L(-1), respectively) against the earthworm Eisenia fetida. None of the other PAHs tested in this study enhanced the mortality of adult earthworm until the concentrations reached to 1000 g L(-1). After exposure to PAHs, acetylcholinesterase (AChE) activity in E. fetida decreased in a concentration-dependent manner, and phenanthrene exhibited the strongest inhibitory effect on AChE, followed by fluorene. Activity of a representative detoxifying enzyme, carboxylesterase, was dramatically reduced in E. fetida exposed to all tested PAHs in comparison with that observed in the control test. The remaining glutathione S-transferase activity significantly decreased in E. fetida after exposure to PAHs. To profile small proteins <20 kDa, SELDI-TOF MS with Q10 ProteinChips was used, and 54 proteins were identified as being significantly different from the control (p = 0.05). Among them, the expressions of three proteins at 4501.8, 4712.4, and 4747.9 m/z were only enhanced in E. fetida exposed to anthracene and pyrene. One protein with 16,174 m/z was selectively expressed in E. fetida exposed to fluorene, phenanthrene, and fluoranthene. These proteins may be potential biomarkers for the five PAHs tested in E. fetida.


Assuntos
Oligoquetos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes do Solo/toxicidade , Animais , Antracenos/toxicidade , Biomarcadores/análise , Fluorenos/toxicidade , Oligoquetos/metabolismo , Fenantrenos/toxicidade , Proteoma/análise , Pirenos/toxicidade
9.
Sci Rep ; 14(1): 11531, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773173

RESUMO

The biogeographical range shift of insect pests is primarily governed by temperature. However, the range shift of seasonal long-distance migratory insects may be very different from that of sedentary insects. Nilaparvata lugens (BPH), a serious rice pest, can only overwinter in tropical-to-subtropical regions, and some populations migrate seasonally to temperate zones with the aid of low-level jet stream air currents. This study utilized the CLIMEX model to project the overwintering area under the climate change scenarios of RCP2.6 and RCP8.5, both in 2030s and 2080s. The overwintering boundary is predicted to expand poleward and new overwintering areas are predicted in the mid-latitude regions of central-to-eastern China and mid-to-southern Australia. With climate change, the habitable areas remained similar, but suitability decreased substantially, especially in the near-equatorial regions, owing to increasing heat stress. The range shift is similar between RCP2.6-2030s, RCP2.6-2080s, and RCP8.5-2030s, but extreme changes are projected under RCP8.5-2080s with marginal areas increasing from 27.2 to 38.8% and very favorable areas dropping from 27.5 to 3.6% compared to the current climate. These findings indicate that climate change will drive range shifts in BPH and alter regional risks differently. Therefore, international monitoring programs are needed to effectively manage these emerging challenges.


Assuntos
Migração Animal , Mudança Climática , Hemípteros , Oryza , Animais , Oryza/parasitologia , Hemípteros/fisiologia , Migração Animal/fisiologia , Austrália , Estações do Ano , China , Temperatura
10.
Environ Int ; 175: 107963, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192573

RESUMO

Arsenic (As)-contaminated soil inevitably exists in nature and has become a global challenge for a sustainable future. Current processes for As capture using natural and structurally engineered nanomaterials are neither scientifically nor economically viable. Here, we established a feasible strategy to enhance As-capture efficiency and ecosystem health by structurally reorganizing iron oxyhydroxide, a natural As stabilizer. We propose crystallization to reorganize FeOOH-acetate nanoplatelets (r-FAN), which is universal for either scalable chemical synthesis or reproduction from natural iron oxyhydroxide phases. The r-FAN with wide interlayer spacing immobilizes As species through a synergistic mechanism of electrostatic intercalation and surface chemisorption. The r-FAN rehabilitates the ecological fitness of As-contaminated artificial and mine soils, as manifested by the integrated bioassay results of collembolan and plants. Our findings will serve as a cornerstone for crystallization-based material engineering for sustainable environmental applications and for understanding the interactions between soil, nanoparticles, and contaminants.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Ecossistema , Cristalização , Poluentes do Solo/análise , Solo/química
11.
Environ Microbiome ; 17(1): 16, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382887

RESUMO

Collembola are soil-dwelling arthropods that play a key role in the soil ecosystem. Allonychiurus kimi (Lee) (Collembola: Onychiuridae) was isolated from the natural environment and has been maintained for 20 years under laboratory conditions. Though the morphological and physiological features of A. kimi are being widely used to evaluate the impact of pesticides and heavy metals on the soil ecosystem, variations observed in these features might be on account of its microbiota. However, the microbiota composition of the laboratory-maintained A. kimi is undetermined and how the community structure is changing in response to soil environments or interacting with the soil microbiota are still unknown. In this study, we determined the microbiota of laboratory-maintained A. kimi at both adult and juvenile stages and examined how the microbiota of A. kimi is affected by the microbial community in the soil environments. Chryseobacterium, Pandoraea, Sphingomonas, Escherichia-Shigella, and Acinetobacter were the core microbiota of A. kimi. Exposure of the laboratory-maintained A. kimi to different soil microbial communities drove dynamic shifts in the composition of A. kimi microbiota. Microbial association network analysis suggested that gut microbiota of lab-grown A. kimi was affected by exposing to soil microbial community. This study implies that shifts in the bacterial community of adult A. kimi can be utilized as an indicator to evaluate the soil ecosystem.

12.
Carbon Balance Manag ; 17(1): 5, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606462

RESUMO

BACKGROUND: Forests are atmospheric carbon sinks, whose natural growth can contribute to climate change mitigation. However, they are also affected by climate change and various other phenomena, for example, the low growth of coniferous forests currently reported globally, including in the Republic of Korea. In response to the implementation of the Paris Agreement, the Korean government has proposed 2030 greenhouse gas roadmap to achieve a Nationally Determined Contribution (NDC), and the forest sector set a sequestration target of 26 million tons by 2030. In this study, the Korean forest growth model (KO-G-Dynamic model) was used to analyze various climate change and forest management scenarios and their capacity to address the NDC targets. A 2050 climate change adaptation strategy is suggested based on forest growth and CO2 sequestration. RESULTS: Forest growth was predicted to gradually decline, and CO2 sequestration was predicted to reach 23 million tons per year in 2050 if current climate and conditions are maintained. According to the model, sequestrations of 33 million tCO2 year-1 in 2030 and 27 million tCO2 year-1 in 2050 can be achieved if ideal forest management is implemented. It was also estimated that the current forest management budget of 317 billion KRW (264 million USD) should be twice as large at 722 billion KRW (602 million USD) in the 2030s and 618 billion KRW (516 million USD) in the 2050s to achieve NDC targets. CONCLUSIONS: The growth trend in Korea's forests transitions from young-matured stands to over-mature forests. The presented model-based forest management plans are an appropriate response and can increase the capacity of Korea to achieve its NDC targets. Such a modeling can help the forestry sector develop plans and policies for climate change adaptation.

13.
Ecol Evol ; 12(12): e9598, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36523529

RESUMO

Collembola are abundant and have significant roles in the soil ecosystem. Therefore, the phenotypic endpoints of Collembola population or community have been used as an effective bioindicator for assessing soil quality. Since the identification and counting the collembolans in the soil is a laborious and costly procedure, environmental DNA (eDNA)-based biomonitoring was proposed as an analysis tool of collembolan species found in the soil. In this study, standard primer sets for the species-specific eDNA analysis using Allonychiurus kimi, a soil bioindicator species was selected. Then, the primers were tested for specificity and sensitivity from the soil samples. Two different eDNA samples were tested: (1) eDNA samples were extracted from the soil with A. kimi individuals (intra-organismal eDNA). (2) The samples from the soil without A. kimi individuals (extra-organismal eDNA). The two primers were confirmed in their sensitivity and specificity to the two types of eDNA samples selected. C t-values from both intra- and extra-organismal eDNA showed the significant correlations to the number of inoculated A. kimi (adj. R 2 = 0.7453-0.9489). These results suggest that in excretion, egg, and other exuviae had a significant effect on eDNA analysis from soil samples taken. Furthermore, our results suggest that environmental factors should be considered when analyzing eDNA collected from soil.

14.
Proteomics ; 11(11): 2294-307, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21548089

RESUMO

The goal of this study was to identify promising new biomarkers of cadmium by identifying differentially expressed proteins in Paronychiurus kimi after exposure to cadmium. Through proteomic analysis of P. kimi using 1-D PAGE and nano-LC-MS/MS, 36 downregulated proteins and 40 upregulated proteins were found. Some of the downregulated and upregulated proteins were verified by LC-MS/MS analysis after 2-D PAGE. Downregulated proteins in response to cadmium exposure were involved in glycolysis and energy metabolism, chaperones, transcription, reproduction, and neuron growth. In contrast, proteins involved in glycolysis and energy production, neurogenesis, defense systems response to bacteria, and protein biosynthesis were upregulated in cadmium-treated collembolans. Cubulin may be a potential biomarker for the detection of cadmium in P. kimi since this biomarker was able to low levels (3.5 mg/kg) of cadmium. The 14-3-3 ζ was also found to be a potential biomarker for the detection of medium levels (14 mg/kg) of cadmium. Collembolans may be an alternative tool to humans because many collembolans proteins show a high homology to human proteins.


Assuntos
Artrópodes/efeitos dos fármacos , Cádmio/toxicidade , Proteínas de Insetos/química , Proteoma/efeitos dos fármacos , Proteômica/métodos , Análise de Variância , Animais , Artrópodes/fisiologia , Biomarcadores/análise , Biomarcadores/química , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Proteínas de Insetos/análise , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Proteoma/química , Receptores de Superfície Celular , Espectrometria de Massas em Tandem
15.
Exp Appl Acarol ; 54(3): 243-59, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21359626

RESUMO

Laboratory bioassays were conducted to evaluate the sublethal effects of fenpyroximate and pyridaben on life-table parameters of two predatory mites species, Neoseiulus (= Amblyseius) womersleyi and Phytoseiulus persimilis. In these assays, young adult females were treated with three sublethal concentrations of each acaricide. The life-table parameters were calculated at each acaricide concentration, and compared using bootstrap procedures. For each acaricide, the LC(50) estimates for both species were similar, yet the two species exhibited completely different susceptibility when the population growth rate was used as the endpoint. Exposure to both acaricides reduced the net reproduction rate (R (o)) in a concentration-dependent manner and their EC(50)s were equivalent to less than LC(7). Two different scales of population-level endpoints were estimated to compare the total effect between the species and treatments: the first endpoint values were based on the net reproductive rate (fecundity λ) and the second endpoint values incorporated the mean egg hatchability into the net reproductive rate (vitality λ). The fecundity λ decreased in a concentration-dependent manner for both acaricide treatments, but the vitality λ decreased abruptly after treatment of N. womersleyi with pyridaben. The change in the patterns of λ revealed that the acaricide effects at the population level strongly depended on the life-history characteristics of the predatory mite species and the chemical mode of action. When the total effects of the two acaricides on N. womersleyi and P. persimilis were considered, fenpyroximate was found to be the most compatible acaricide for the augmentative release of N. womersleyi after treatment.


Assuntos
Acaricidas , Benzoatos , Ácaros , Pirazóis , Piridazinas , Animais , Feminino , Fertilidade/efeitos dos fármacos , Controle de Pragas , Especificidade da Espécie
16.
Toxics ; 9(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072838

RESUMO

Glyphosate is the most used herbicide worldwide, but enormous use of glyphosate has raised concerned about its environmental loadings. Although glyphosate is considered non-toxic, toxicity data for soil non-target organisms according to temperature and aging are scarce. This study examined the toxicity of glyphosate with the temperature (20 °C and 25 °C) and aging times (0 day and 7 days) in soil using a collembolan species, Allonychiurus kimi (Lee). The degradation of glyphosate was investigated. Fatty acid composition of A. kimi was also investigated. The half-life of glyphosate was 2.38 days at 20 °C and 1.69 days at 25 °C. At 20 °C with 0 day of aging, the EC50 was estimated to be 93.5 mg kg-1. However, as the temperature and aging time increased, the glyphosate degradation increased, so no significant toxicity was observed on juvenile production. The proportions of the arachidonic acid and stearic acid decreased and increased with the glyphosate treatment, respectively, even at 37.1 mg kg-1, at which no significant effects on juvenile production were observed. Our results showed that the changes in the glyphosate toxicity with temperature and aging time were mostly dependent on the soil residual concentration. Furthermore, the changes in the fatty acid compositions suggest that glyphosate could have a chronic effect on soil organisms.

17.
Mitochondrial DNA B Resour ; 6(3): 925-926, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33796684

RESUMO

The complete mitochondrial genome of Yuukianura szeptyckii Deharveng & Weiner 1984 was sequenced, assembled, and annotated. The mitochondrial genome of Y. szeptyckii has a length of 15,771 bp and contains 13 protein-coding genes (PCGs), 22 transfer (tRNA) genes, and 2 ribosomal RNA (rRNA) genes. Y. szeptyckii was closely clustered with the following species of Neanuridae: Bilobella aurantiaca and Friesea grisea.

18.
Environ Pollut ; 291: 118250, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597733

RESUMO

Thermal discharge and heatwaves under climate change may increase water temperature. In this study, the individual and combined effect of elevated temperature and cadmium (Cd) toxicity on somatic growth and reproduction of Daphnia magna was evaluated using a simplified dynamic energy budget model (DEBtox). The model predicted that the maximum body length (Lm) would be shorter (3.705 mm) at an elevated temperature of 25 °C than at 20 °C (3.974 mm), whereas the maximum reproduction rate (R˙m) would be higher at 25 °C (5.735) than at 20 °C (5.591). The somatic growth and reproduction of D. magna were significantly (p < 0.05) reduced with increasing Cd concentrations, and the reduction was greater at 25 than at 20 °C. Potentiation of Cd toxicity by elevated temperature was correctly simulated by assuming four toxicological modes of action influencing assimilation, somatic maintenance and growth, and reproduction. Overall, the population growth rate of D. magna was expected to decrease linearly with increasing Cd concentrations, and the decrease was expected to be higher at 25 than at 20 °C. These findings suggest a significant ecological risk of toxic metals at elevated temperature, with a mechanistic interpretation of the potentiation effect using a DEBtox modeling approach.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Cádmio/análise , Cádmio/toxicidade , Reprodução , Temperatura , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Sci Total Environ ; 763: 144223, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373786

RESUMO

Hydrophytes have been widely used to reduce nutrient levels in aquatic ecosystems, but only limited species with high nutrient removal efficiencies have been implemented. Thus, it is necessary to continually explore new candidate species with high nutrient removal efficiencies. To effectively explore the nutrient removal ability of hydrophytes, a new process-based model combining the multiple-quotas approach and nutrient-cycle model was developed. The multiple-quotas approach provides a theoretical framework to conceptually explain the uptake and response of autotrophs to multiple nutrients. The developed process-based model was validated using observational data from microcosm experiments with two emergent hydrophytes, Menyanthes trifoliata and Cicuta virosa. The results showed that both M. trifoliata and C. virosa effectively reduced nitrogen (N) and phosphorus (P) in both water and sediment layers, but M. trifoliata showed a higher removal efficiency for both nutrients than C. virosa, particularly for total ammonia + ammonium-nitrogen (NHx-N) and nitrate-nitrogen (NO3-N) in the sediment layer (M. trifoliata: 0.579-0.976 for NHx-N, 0.567-0.702 for NO3-N; C. virosa: 0.212-0.501 for NHx-N, 0.466-0.560 for NO3-N). In addition, M. trifoliata achieved the maximum removal efficiency for N and P at higher nutrient exposure levels than C. virosa (M. trifoliata: exposure level of 0.725-0.775; C. virosa: exposure level of 0.550-0.575). The developed model well simulated the species-specific growth patterns of hydrophytes depending on the nutrient exposure level as well as the N and P dynamics in the water and sediment layers. The approach adopted in this study provides a useful tool for discovering candidate species to improve hydrophyte diversity and effectively remove nutrients from aquatic ecosystems.


Assuntos
Ecossistema , Águas Residuárias , Nitrogênio/análise , Nutrientes , Fósforo
20.
Environ Pollut ; 291: 118172, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543960

RESUMO

Glyphosate-based herbicide (GBH) is the most widely used herbicide worldwide and has long been considered to have significantly low toxicity to non-target soil invertebrates based on short-term toxicity tests (<56 d). However, long-term GBH toxicity assessment is necessary as GBH is repeatedly applied in the same field annually because of the advent of glyphosate-resistant crops. In this study, a multigeneration test was conducted where Allonychiurus kimi (Collembola) was exposed to GBH for three generations (referred to as F0, F1, and F2) to evaluate the long-term toxic effect. The endpoints used were adult survival and juvenile production for the individual level toxicity assessment. Phospholipid profile and population age structure were the endpoints used for sub-individual and population levels, respectively. GBH was observed to have no negative effects on adult survivals of all generations, but juvenile production was found to decrease in a concentration-dependent manner, with EC50s being estimated as 572.5, 274.8, and 59.8 mg a.i. kg-1 in the F0, F1, and F2 generations, respectively. The age structure of A. kimi population produced in the test of all generations was altered by GBH exposure, mainly because of the decrease in the number of young juveniles. Further, differences between the phospholipid profiles of the control and GBH treatments became apparent over generations, with PA 16:0, PA 12:0, and PS 42:0 lipids not being detected at the highest concentration of 741 mg kg-1 in F2. Considering all our findings from sub-individual to population levels, repeated and long-term use of GBH could have significantly higher negative impacts on non-target soil organisms than expected.


Assuntos
Artrópodes , Herbicidas , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Testes de Toxicidade , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA