Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28249, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596037

RESUMO

The importance of disinfection has recently been emphasized due to the increasing risk of the spread of infections such as coronavirus disease-2019 (COVID-19). In addition, disinfection for preventing the spread of COVID-19 is highly recommended. The increased use of biocidal products raises concerns regarding the potential health risks from exposure among disinfection workers. This study aimed to assess these exposure and health risks using questionnaires targeting disinfection workers who were exposed to the active substances in biocidal products used for disinfection during the COVID-19 pandemic. A follow-up survey was conducted among 271 disinfection workers for 10 working days within two weeks, and exposure factors with reference to disinfection were evaluated through interview-administered questionnaires. An exposure algorithm was used to evaluate the exposure of disinfection workers during disinfection. The hazard index (HI) was calculated by dividing the inhalation concentration obtained using the exposure algorithm and the dermal dose according to occupational exposure limits (OEL). A sensitivity analysis was conducted to identify the exposure factors with the greatest impact on the inhalation and dermal exposure algorithms. A logistic regression analysis was performed to verify the relationship with health effects and sociodemographic and exposure characteristics. The average number of disinfections performed during 10 working days was 17.5 ± 12.3 times. The type of disinfection work was divided into 2806 cases of COVID-19 prevention and disinfection and 1956 cases of regular pesticide application to prevent and remove any pests. The HI was ≥1, indicating a potential health risk, with the use of ethanol (6.50E+00), quaternary ammonium compounds (QACs; 1.49E+01), and benzalkonium chloride (BKC; 1.73E+00). Dermal exposure was more hazardous than inhalation exposure for 6 of the 11 active substances in biocidal products. The weight fraction and exposure time were the factors that most significantly influenced the inhalation and dermal exposure algorithms in the sensitivity analysis. Higher exposure concentrations were more likely to affect health (AOR: 3.239, 95% CI: 1.155-9.082). This study provides valuable information regarding the exposure and risk of disinfection workers to 11 biocidal active substances included in common disinfectants. Our results suggest that the use of ethanol, BKC, and QACs has potential health risks to disinfection workers, with a higher possibility of negative health impacts with increasing exposure concentration.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35206634

RESUMO

The 2014 Time-Use Survey of Statistics Korea revealed that office workers are increasingly spending more than eight hours at work. This study conducted an exposure assessment for office workers in Korea. Indoor and outdoor air pollutants were measured in offices. A self-administered questionnaire was employed to determine work information, indoor air quality (IAQ) awareness, and subjective symptoms for 328 workers. Indoor air concentrations for measured air pollutants were below IAQ guideline values. The average concentrations of target air pollutants did not show significant differences except for benzene, which had relatively a higher concentration in national industrial complexes. The indoor benzene, ethylbenzene, and acetaldehyde concentrations were higher in offices where workers were having dry eye, ophthalmitis, and headache symptoms. This study provides reference values to manage IAQ in offices, suggesting that if the benzene concentration exceeds 4.23 µg/m3 in offices, it could cause dry eye symptoms. Considering the increasing working hours for office workers and health effects, workers' exposure to indoor pollutants should be reduced. In addition, the IAQ was heavily influenced by outdoor air levels and various indoor sources. Therefore, in areas with relatively high air pollution, greater monitoring and management is required considering the influence of outdoor air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Medição de Risco
3.
Toxics ; 8(3)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962012

RESUMO

Human exposure to air pollution is a major public health concern. Environmental policymakers have been implementing various strategies to reduce exposure, including the 10th-day-no-driving system. To assess exposure of an entire population of a community in a highly polluted area, pollutant concentrations in microenvironments and population time-activity patterns are required. To date, population exposure to air pollutants has been assessed using air monitoring data from fixed atmospheric monitoring stations, atmospheric dispersion modeling, or spatial interpolation techniques for pollutant concentrations. This is coupled with census data, administrative registers, and data on the patterns of the time-based activities at the individual scale. Recent technologies such as sensors, the Internet of Things (IoT), communications technology, and artificial intelligence enable the accurate evaluation of air pollution exposure for a population in an environmental health context. In this study, the latest trends in published papers on the assessment of population exposure to air pollution were reviewed. Subsequently, this study proposes a methodology that will enable policymakers to develop an environmental health surveillance system that evaluates the distribution of air pollution exposure for a population within a target area and establish countermeasures based on advanced exposure assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA