Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biopharm Drug Dispos ; 40(2): 94-98, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30636046

RESUMO

Licoricidin is a major prenylated isoflavone of Glycyrrhiza uralensis Fisch. (Leguminosae), and its pharmacological effects have been reported frequently. Typically, flavonoids having multiple hydroxyl groups are unambiguous substrates for glucuronyl conjugation by UDP-glucuronosyltransferases (UGTs). The pharmacological effects of flavonoids are derived from the conjugation of glucuronide to yield the bioactive metabolite. Here, the metabolism of licoricidin in pooled human liver microsomes (HLMs) was investigated using high-resolution quadrupole-orbitrap mass spectrometry. One metabolite (M1) was identified in HLMs after incubation with licoricidin in the presence of uridine 5'-diphosphoglucuronic acid (UDPGA) and NADPH. The structure of M1 was determined as a monoglucuronyl licoricidin, which was selectively produced by UGT1A9. Licoricidin showed a higher metabolic ratio and rapid metabolism with the recombinant human UGT1A9 than mycophenolic acid, a well-known UGT1A9 substrate. In conclusion, the selective formation of 7-glucuronyl licoricidin by UGT1A9 in HLMs could serve as a new selective substrate to determine the activity of UGT1A9 in vitro.


Assuntos
Benzopiranos/metabolismo , Benzopiranos/farmacologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Benzopiranos/isolamento & purificação , Glycyrrhiza uralensis/química , Humanos , Técnicas In Vitro , Microssomos Hepáticos/metabolismo , Raízes de Plantas/química , UDP-Glucuronosiltransferase 1A
2.
Toxicol Appl Pharmacol ; 352: 28-37, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29792946

RESUMO

Non-alcoholic fatty liver disease (NAFLD) includes conditions such as steatosis, non-alcoholic steatohepatitis, and ultimately hepatocellular carcinoma. Although the pathology of NAFLD is well-established, NAFLD-induced drug metabolism mediated by cytochrome P450 (CYP) in the liver has remained largely unexplored. Therefore, we investigated NAFLD-induced drug metabolism mediated by CYP by quantitative toxicoproteomics analysis. After administration of a methionine-choline deficient (MCD) diet to induce development of NAFLD, tandem mass tags-based liquid chromatography-tandem mass spectrometry analysis was conducted to investigate the dynamics of hepatic proteins. A total of 1295 proteins were identified, of which 934 were quantified by proteomic analysis. Among these proteins, 21 proteins were up-regulated and 51 proteins were down-regulated by the MCD diet. Notably, domain annotation enrichment using InterPro indicated that proteins related to CYPs were significantly decreased. When we investigated CYP activity using in vivo and in vitro CYP cocktail assays, most CYPs were significantly decreased, whereas CYP2D was not changed after administration of the MCD diet. In conclusion, we identified significantly altered levels of CYPs and their activities induced by the MCD diet and confirmed the NAFLD-induced drug metabolism by pharmacokinetic analysis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Proteômica/métodos , Toxicologia/métodos , Xenobióticos/metabolismo , Animais , Deficiência de Colina/complicações , Cromatografia Líquida , Biologia Computacional , Modelos Animais de Doenças , Interações Medicamentosas , Isoenzimas , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Medição de Risco , Especificidade por Substrato , Espectrometria de Massas em Tandem , Xenobióticos/farmacocinética , Xenobióticos/toxicidade
3.
Pharmaceutics ; 10(3)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200214

RESUMO

Osthenol is a prenylated coumarin isolated from the root of Angelica koreana and Angelica dahurica, and is an O-demethylated metabolite of osthole in vivo. Its various pharmacological effects have been reported previously. The metabolic pathway of osthenol was partially confirmed in rat osthole studies, and 11 metabolic products were identified in rat urine. However, the metabolic pathway of osthenol in human liver microsomes (HLM) has not been reported. In this study, we elucidated the structure of generated metabolites using a high-resolution quadrupole-orbitrap mass spectrometer (HR-MS/MS) and characterized the major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) isozymes involved in osthenol metabolism in human liver microsomes (HLMs). We identified seven metabolites (M1-M7) in HLMs after incubation in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and uridine 5'-diphosphoglucuronic acid (UDPGA). As a result, we demonstrated that osthenol is metabolized to five mono-hydroxyl metabolites (M1-M5) by CYP2D6, 1A2, and 3A4, respectively, a 7-O-glucuronide conjugate (M6) by UGT1A9, and a hydroxyl-glucuronide (M7) from M5 by UGT1A3 in HLMs. We also found that glucuronidation is the dominant metabolic pathway of osthenol in HLMs.

4.
Pharmaceutics ; 10(3)2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072626

RESUMO

Loxoprofen, a propionic acid derivative, non-steroidal anti-inflammatory drug (NSAID) is a prodrug that is reduced to its active metabolite, trans-alcohol form (Trans-OH) by carbonyl reductase enzyme in the liver. Previous studies demonstrated the hydroxylation and glucuronidation of loxoprofen. However, the specific enzymes catalyzing its metabolism have yet to be identified. In the present study, we investigated metabolic enzymes, such as cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), which are involved in the metabolism of loxoprofen. Eight microsomal metabolites of loxoprofen were identified, including two alcohol metabolites (M1 and M2), two mono-hydroxylated metabolites (M3 and M4), and four glucuronide conjugates (M5, M6, M7, and M8). Based on the results for the formation of metabolites when incubated in dexamethasone-induced microsomes, incubation with ketoconazole, and human recombinant cDNA-expressed cytochrome P450s, we identified CYP3A4 and CYP3A5 as the major CYP isoforms involved in the hydroxylation of loxoprofen (M3 and M4). Moreover, we identified that UGT2B7 is the major UGT isoform catalyzing the glucuronidation of loxoprofen and its alcoholic metabolites. Further experimental studies should be carried out to determine the potency and toxicity of these identified metabolites of loxoprofen, in order to fully understand of mechanism of loxoprofen toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA