RESUMO
The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.
Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genéticaRESUMO
The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.
Assuntos
Dano ao DNA , Instabilidade Genômica , Proteínas de Ciclo Celular/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Instabilidade Genômica/genéticaRESUMO
The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.
Assuntos
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Linhagem Celular , DNA/metabolismo , Dano ao DNA , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Genes BRCA1/fisiologia , Humanos , Enzimas Multifuncionais/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismoRESUMO
Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.
Assuntos
Mutação , Estabilidade Proteica , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Camundongos , Feminino , Sistemas CRISPR-Cas , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Regulação Neoplásica da Expressão Gênica , Repetições Palindrômicas Curtas Agrupadas e Regularmente EspaçadasRESUMO
Idiosyncratic drug-induced liver injury (IDILI) is an idiosyncratic drug reaction that is specific to an individual and can lead to liver failure and even death. The mechanism of IDILI remains poorly understood, but most IDILI appears to be immune-mediated. We have developed the first validated animal model by using a PD-1-/- mouse model in combination with anti-CTLA-4 to block immune checkpoints and impair immune tolerance. Treatment of these mice with drugs that cause IDILI in humans led to delayed-onset liver injury with characteristics similar to IDILI in humans. The current study investigates the effects of green tea extract, a weight-loss dietary supplement that has been reported to cause IDILI in humans. Green tea extracts contain a highly variable content of catechins including (-)-epigallocatechin gallate, the major catechin in green tea formulations. If the liver injury caused by green tea extract in humans is immune-mediated, it may occur in our impaired immune tolerance model. Female PD-1-/- mice treated with anti-CTLA-4 antibody and green tea extract (500 mg/kg), a dose that is considered a no-observed-adverse-effect level for liver in rodents, produced a delayed onset increase in serum alanine transaminase levels and an increase in hepatic CD8+ T cells. In contrast, the response in male PD-1-/- mice was less pronounced, and there was no evidence of liver injury in wild-type mice. These findings are consistent with the hypothesis that the IDILI caused by green tea extract is immune-mediated and is similar to IDILI caused by medications that are associated with IDILI.
Assuntos
Catequina/farmacologia , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Chá/química , Animais , Catequina/química , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Relação Dose-Resposta a Droga , Feminino , Tolerância Imunológica/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Extratos Vegetais/química , Receptor de Morte Celular Programada 1/deficiência , Receptor de Morte Celular Programada 1/imunologiaRESUMO
Idiosyncratic drug reactions (IDRs) significantly increase the risk of failure in drug development. The major IDR leading to drug candidate failure is idiosyncratic drug-induced liver injury (IDILI). Although most evidence suggests that IDRs are mediated by the immune system, there are other hypotheses, such as mitochondrial dysfunction. Many pharmaceutical companies routinely screen for mitochondrial toxicity in an attempt to "derisk" drug candidates. However, the basic hypothesis has never been rigorously tested. A major assay used for this screening involves measurement of inhibition of the mitochondrial electron transport chain. One study found that the combination of rotenone and isoniazid, which inhibit mitochondrial complex I and II, respectively, were synergistic in causing hepatocyte toxicity in vitro and suggested the combination of another drug that inhibited complex I would increase the risk of isoniazid-induced liver injury in patients. We tested this hypothesis in vivo where wild-type and PD-1-/- mice administered anti-CTLA-4, our impaired immune tolerance mouse model, were given 0.02% (w/v) rotenone in water or 0.1%, 0.05%, and 0.01% (w/w) rotenone alone or in combination with isoniazid in food. The cotreatment led to lethality in 100% of the animals receiving 0.1% rotenone and 0.2% isoniazid and 83% of the animals cotreated with 0.05% rotenone and 0.2% isoniazid in food. Nevertheless, there was no significant increase in GLDH or histological evidence of liver injury. No signs of toxicity were observed in any of the mice given rotenone or isoniazid alone. Even though inhibition of the mitochondrial electron transport chain did not lead to significant liver toxicity, it could provide danger signals that promote immune-mediated liver injury. However, rotenone did not significantly increase the liver injury induced by isoniazid in our impaired immune tolerance model. Overall, we conclude that inhibition of the mitochondrial electron transport chain is not a significant mechanism of IDILI.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Transporte de Elétrons/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Isoniazida/toxicidade , Mitocôndrias/efeitos dos fármacos , Rotenona/toxicidade , Animais , Sinergismo Farmacológico , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Feminino , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
Here, we report the biochemical characterization of the mono-ADP-ribosyltransferase 2,3,7,8-tetrachlorodibenzo-p-dioxin poly-ADP-ribose polymerase (TIPARP/ARTD14/PARP7), which is known to repress aryl hydrocarbon receptor (AHR)-dependent transcription. We found that the nuclear localization of TIPARP was dependent on a short N-terminal sequence and its zinc finger domain. Deletion and in vitro ADP-ribosylation studies identified amino acids 400-657 as the minimum catalytically active region, which retained its ability to mono-ADP-ribosylate AHR. However, the ability of TIPARP to ADP-ribosylate and repress AHR in cells was dependent on both its catalytic activity and zinc finger domain. The catalytic activity of TIPARP was resistant to meta-iodobenzylguanidine but sensitive to iodoacetamide and hydroxylamine, implicating cysteines and acidic side chains as ADP-ribosylated target residues. Mass spectrometry identified multiple ADP-ribosylated peptides in TIPARP and AHR. Electron transfer dissociation analysis of the TIPARP peptide 33ITPLKTCFK41 revealed cysteine 39 as a site for mono-ADP-ribosylation. Mutation of cysteine 39 to alanine resulted in a small, but significant, reduction in TIPARP autoribosylation activity, suggesting that additional amino acid residues are modified, but loss of cysteine 39 did not prevent its ability to repress AHR. Our findings characterize the subcellular localization and mono-ADP-ribosyltransferase activity of TIPARP, identify cysteine as a mono-ADP-ribosylated residue targeted by this enzyme, and confirm the TIPARP-dependent mono-ADP-ribosylation of other protein targets, such as AHR.
Assuntos
ADP Ribose Transferases/genética , Cisteína/genética , Mutação de Sentido Incorreto , Poli(ADP-Ribose) Polimerases/genética , ADP Ribose Transferases/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Animais , Biocatálise/efeitos dos fármacos , Células COS , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Chlorocebus aethiops , Cisteína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Células MCF-7 , Proteínas de Transporte de Nucleosídeos , Poli(ADP-Ribose) Polimerases/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Dedos de Zinco/genéticaRESUMO
TCDD-inducible poly-ADP-ribose polymerase (TIPARP) is an aryl hydrocarbon receptor (AHR) target gene that functions as part of a negative feedback loop to repress AHR activity. Tiparp-/- mice exhibit increased sensitivity to the toxicological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including lethal wasting syndrome. However, it is not known whether Tiparp-/- mice also exhibit increased sensitivity to other AHR ligands. In this study, we treated male Tiparp-/- or wild type (WT) mice with a single injection of 100 mg/kg 3-methylcholanthrene (3MC). Consistent with TIPARP's role as a repressor of AHR signaling, 3MC-treated Tiparp-/- mice exhibited increased hepatic Cyp1a1 and Cyp1b1 levels compared with WT mice. No 3MC-treated Tiparp-/- mice survived beyond day 16 and the mice exhibited chylous ascites characterized by an accumulation of fluid in the peritoneal cavity. All WT mice survived the 30-day treatment and showed no signs of fluid accumulation. Treated Tiparp-/- mice also exhibited a transient and mild hepatotoxicity with inflammation. 3MC-treated WT, but not Tiparp-/- mice, developed mild hepatic steatosis. Lipid deposits accumulated on the surface of the liver and other abdominal organs in the 3MC-Tiparp-/- mice. Our study reveals that Tiparp-/- mice have increased sensitivity to 3MC-induced liver toxicity, but unlike with TCDD, lethality is due to chylous ascites rather than wasting syndrome.
Assuntos
Ascite Quilosa/induzido quimicamente , Ascite Quilosa/enzimologia , Metilcolantreno/toxicidade , Poli(ADP-Ribose) Polimerases/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Compostos Azo/farmacologia , Ascite Quilosa/patologia , Citocinas/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Knockout , Poli(ADP-Ribose) Polimerases/genética , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Análise de SobrevidaRESUMO
If idiosyncratic drug-induced liver injury (IDILI) is immune mediated, then it is logical that immune modulators may be able to affect liver injury caused by a drug. We have previously shown that modulating the immune system by impairing programmed cell death protein (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) signaling, both receptors involved in immune tolerance, was capable of producing an animal model of amodiaquine (AQ) IDILI with characteristics very similar to IDILI in humans. Other immune modulators may also increase liver injury caused by drugs that cause IDILI in humans. In this study, myeloid derived suppressor cells (MDSCs), transforming growth factor beta (TGF-ß), and lymphocyte-activation gene 3 (LAG3) were targeted with antibodies, with and without PD-1 and CTLA-4 impairment. We found that anti-Gr1 antibodies used to deplete MDSCs led to a significant increase in AQ-induced liver injury in wild-type mice; however, the injury was actually less in PD-1-/- mice, with or without anti-CTLA-4, and it was less than we have previously observed in PD-1-/- mice combined with anti-CTLA-4 without anti-Gr1. Addition of anti-LAG3 or anti-TGF-ß antibodies produced a small increase ALT in AQ-treated wild-type mice. There was a significant increase in ALT in PD-1-/- mice co-treated with anti-LAG3 or anti-TGF-ß relative to AQ-treated wild-type mice. In the case of TGF-ß, this was further increased by the addition of anti-CTLA-4, but if anything, there appeared to be a paradoxical decrease when anti-CTLA-4 was combined with anti-LAG3. Overall, the results from this study were not always as expected, and they highlight the complexity of the immune response, in particular immune tolerance, which appears to be the dominant immune response to drugs that cause IDILI.
Assuntos
Adjuvantes Imunológicos/farmacologia , Amodiaquina/toxicidade , Antimaláricos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , Animais , Antígeno CTLA-4/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo , Transdução de SinaisRESUMO
Little is known with certainty about the mechanisms of idiosyncratic drug reactions (IDRs); however, there is substantive evidence that reactive metabolites are involved in most, but not all, IDRs. In addition, evidence also suggests that most IDRs are immune mediated. That raises the question of how reactive metabolites induce an immune response that can lead to an IDR. The dominant hypotheses are the hapten and danger hypotheses. These are complementary hypotheses: a reactive metabolite can act as a hapten to produce neoantigens, and it can also cause cell damage leading to the release of danger-associated molecular pattern molecules that activate antigen presenting cells. Both are required for an immune response. In addition, drugs may induce an immune response through inflammasome activation. We have found examples in which the ability to activate inflammasomes differentiated drugs that cause IDRs from similar drugs that do not. There are other hypotheses that do not involve an immune mechanism such as mitochondrial injury and bile salt export pump (BSEP) inhibition. With some possible exceptions, these hypotheses are unlikely to be able to completely explain IDRs. However, some types of mitochondrial injury or BSEP inhibition could produce danger signals. The major mechanism that protects us from IDRs appears to be immune tolerance. Consistent with this hypothesis, we used checkpoint inhibition to develop the first animal model of idiosyncratic drug-induced liver injury that has the same characteristics as the idiosyncratic injury in humans. This was accomplished by treating Pd-1-/- mice with anti-CTLA-4 antibodies and amodiaquine. The combination of the Pd-1-/- mouse and anti-CTLA-4 also unmasks the ability of other drugs such as isoniazid to cause delayed type liver injury. This model should allow rigorous testing of mechanistic hypotheses that was impossible in the past.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Humanos , Tolerância Imunológica , Fatores de RiscoRESUMO
Members of the poly-ADP-ribose polymerase (PARP) family catalyse the ADP-ribosylation of target proteins and are known to play important roles in many cellular processes, including DNA repair, differentiation and transcription. The majority of PARPs exhibit mono-ADP-ribosyltransferase activity rather than PARP activity; however, little is known about their biological activity. In the present study, we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP), mono-ADP-ribosylates and positively regulates liver X receptor α (LXRα) and LXRß activity. Overexpression of TIPARP enhanced LXR-reporter gene activity. TIPARP knockdown or deletion reduced LXR regulated target gene expression levels in HepG2 cells and in Tiparp(-/-)mouse embryonic fibroblasts (MEFs) respectively. Deletion and mutagenesis studies showed that TIPARP's zinc-finger and catalytic domains were required to enhance LXR activity. Protein interaction studies using TIPARP and LXRα/ß peptide arrays revealed that LXRs interacted with an N-terminal sequence (a.a. 209-236) of TIPARP, which also overlapped with a putative co-activator domain of TIPARP (a.a. 200-225). Immunofluorescence studies showed that TIPARP and LXRα or LXRß co-localized in the nucleus.In vitroribosylation assays provided evidence that TIPARP mono-ADP-ribosylated both LXRα and LXRß. Co-immunoprecipitation (co-IP) studies revealed that ADP-ribosylase macrodomain 1 (MACROD1), but not MACROD2, interacted with LXRs in a TIPARP-dependent manner. This was complemented by reporter gene studies showing that MACROD1, but not MACROD2, prevented the TIPARP-dependent increase in LXR activity. GW3965-dependent increases in hepatic Srebp1 mRNA and protein expression levels were reduced in Tiparp(-/-)mice compared with Tiparp(+/+)mice. Taken together, these data identify a new mechanism of LXR regulation that involves TIPARP, ADP-ribosylation and MACROD1.
Assuntos
ADP Ribose Transferases/metabolismo , Núcleo Celular/metabolismo , Receptores Nucleares Órfãos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , ADP Ribose Transferases/genética , Adenosina Difosfato Ribose/genética , Adenosina Difosfato Ribose/metabolismo , Animais , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Células Hep G2 , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Receptores X do Fígado , Camundongos , Camundongos Knockout , Proteínas de Transporte de Nucleosídeos , Receptores Nucleares Órfãos/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismoRESUMO
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp(-/-) mice given a single injection of 100 µg/kg dioxin did not survive beyond day 5; all Tiparp(+/+) mice survived the 30-day treatment. Dioxin-treated Tiparp(-/-) mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin.
Assuntos
Dioxinas/toxicidade , Fígado Gorduroso/enzimologia , Fígado Gorduroso/mortalidade , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerases/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismoRESUMO
Idiosyncratic drug reactions (IDRs) are associated with significant patient morbidity/mortality and lead to considerable drug candidate attrition in drug development. Their idiosyncratic nature makes the study of IDRs difficult. In particular, nevirapine is associated with a relatively high risk of serious skin rash and liver injury. We previously found that nevirapine causes a similar skin rash in female Brown Norway rats, but these animals do not develop significant liver injury. Programmed cell death protein-1 (PD-1) is an immune checkpoint involved in immune tolerance, and anti-PD-1 antibodies have been used to treat cancer. However, they increase the risk of liver injury caused by co-administered drugs. We found that PD-1-/- mice are more susceptible to drug-induced liver injury, but PD-1-/- mice are not a good model for all drugs. In particular, they do not develop a skin rash when treated with nevirapine, at least in part because they lack the sulfotransferase in their skin that forms the reactive metabolite responsible for the rash. Therefore, we developed a PD-1 mutant (PD-1m/m) rat, with an excision in the ligand-binding domain of PD-1, to test whether nevirapine would cause a more serious skin rash in these animals. The PD-1m/m rat was based on a Sprague Dawley background, which has a lower incidence of skin rash than Brown Norway rats. The treated PD-1m/m rats developed more severe liver injury than PD-1-/- mice, but in contrast to expectations, they did not develop a skin rash. Functional knockouts provide a unique tool to study the mechanisms of IDRs.
Assuntos
Nevirapina , Receptor de Morte Celular Programada 1 , Ratos Endogâmicos BN , Animais , Nevirapina/toxicidade , Feminino , Receptor de Morte Celular Programada 1/genética , Ratos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Técnicas de Inativação de Genes , MasculinoRESUMO
Idiosyncratic drug reactions are rare but serious adverse drug reactions unrelated to the known therapeutic properties of the drug and manifest in only a small percentage of the treated population. Animal models play an important role in advancing mechanistic studies examining idiosyncratic drug reactions. However, to be useful, they must possess similarities to those seen clinically. Although mice currently represent the dominant mammalian genetic model, rats are advantageous in many areas of pharmacologic study where their physiology can be examined in greater detail and is more akin to that seen in humans. In the area of immunology, this includes autoimmune responses and susceptibility to diabetes, in which rats more accurately mimic disease states in humans compared with mice. For example, oral nevirapine treatment can induce an immune-mediated skin rash in humans and rats, but not in mice due to the absence of the sulfotransferase required to form reactive metabolites of nevirapine within the skin. Using CRISPR-mediated gene editing, we developed a modified line of transgenic rats in which a segment of IgG-like ectodomain containing the core PD-1 interaction motif containing the native ligand and therapeutic antibody domain in exon 2 was deleted. Removal of this region critical for mediating PD-1/PD-L1 interactions resulted in animals with an increased immune response resulting in liver injury when treated with amodiaquine.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nevirapina , Humanos , Ratos , Camundongos , Animais , Nevirapina/toxicidade , Nevirapina/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Sistemas CRISPR-Cas , Modelos Animais , Fígado/metabolismo , Mamíferos/metabolismoRESUMO
TMEM184B is a putative seven-pass membrane protein that promotes axon degeneration after injury. TMEM184B mutation causes aberrant neuromuscular architecture and sensory and motor behavioral defects in mice. The mechanism through which TMEM184B causes neuromuscular defects is unknown. We employed Drosophila melanogaster to investigate the function of the closely related gene, Tmep (CG12004), at the neuromuscular junction. We show that Tmep is required for full adult viability and efficient larval locomotion. Tmep mutant larvae have a reduced body contraction rate compared to controls, with stronger deficits in females. In recordings from body wall muscles, Tmep mutants show substantial hyperexcitability, with many postsynaptic potentials fired in response to a single stimulation, consistent with a role for Tmep in restraining synaptic excitability. Additional branches and satellite boutons at Tmep mutant neuromuscular junctions are consistent with an activity-dependent synaptic overgrowth. Tmep is expressed in endosomes and synaptic vesicles within motor neurons, suggesting a possible role in synaptic membrane trafficking. Using RNAi knockdown, we show that Tmep is required in motor neurons for proper larval locomotion and excitability, and that its reduction increases levels of presynaptic calcium. Locomotor defects can be rescued by presynaptic knockdown of endoplasmic reticulum calcium channels or by reducing evoked release probability, further suggesting that excess synaptic activity drives behavioral deficiencies. Our work establishes a critical function for Tmep in the regulation of synaptic transmission and locomotor behavior.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Larva/metabolismo , Locomoção/genética , Camundongos , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
OBJECTIVE: Cholecystokinin (CCK) plays a critical role in regulating eating and metabolism. Previous studies have mapped a multi-synapse neural pathway from the vagus nerve to the central nucleus of the amygdala (CEA) that mediates the anorexigenic effect of CCK. However, the neural circuit downstream of the CEA is still unknown due to the complexity of the neurons in the CEA. Here we sought to determine this circuit using a novel approach. METHODS: It has been established that a specific population of CEA neurons, marked by protein kinase C-delta (PKC-δ), mediates the anorexigenic effect of CCK by inhibiting other CEA inhibitory neurons. Taking advantage of this circuit, we dissected the neural circuit using a unique approach based on the idea that neurons downstream of the CEA should be disinhibited by CEAPKC-δ+ neurons while being activated by CCK. We also used optogenetic assisted electrophysiology circuit mapping and in vivo chemogenetic manipulation methods to determine the circuit structure and function. RESULTS: We found that neurons in the parasubthalamic nucleus (PSTh) are activated by the activation of CEAPKC-δ+ neurons and by the peripheral administration of CCK. We demonstrated that CEAPKC-δ+ neurons inhibit the PSTh-projecting CEA neurons; accordingly, the PSTh neurons can be disynaptically disinhibited or "activated" by CEAPKC-δ+ neurons. Finally, we showed that chemogenetic silencing of the PSTh neurons effectively attenuates the eating suppression induced by CCK. CONCLUSIONS: Our results identified a disynaptic CEA-PSTh neural circuit that mediates the anorexigenic effect of CCK and thus provide an important neural mechanism of how CCK suppresses eating.
Assuntos
Núcleo Central da Amígdala , Colecistocinina , Animais , Núcleo Central da Amígdala/metabolismo , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Camundongos , Vias Neurais/metabolismo , Neurônios/metabolismo , OptogenéticaRESUMO
The search for effective drugs to treat new and existing diseases is a laborious one requiring a large investment of capital, resources, and time. The coronavirus 2019 (COVID-19) pandemic has been a painful reminder of the lack of development of new antimicrobial agents to treat emerging infectious diseases. Artificial intelligence (AI) and other in silico techniques can drive a more efficient, cost-friendly approach to drug discovery by helping move potential candidates with better clinical tolerance forward in the pipeline. Several research teams have developed successful AI platforms for hit identification, lead generation, and lead optimization. In this review, we investigate the technologies at the forefront of spearheading an AI revolution in drug discovery and pharmaceutical sciences.
Assuntos
Anti-Infecciosos/uso terapêutico , Inteligência Artificial , Tratamento Farmacológico da COVID-19 , Doenças Transmissíveis Emergentes/tratamento farmacológico , Descoberta de Drogas/métodos , SARS-CoV-2 , Animais , HumanosRESUMO
ABSTRACT: Nociceptive and pruriceptive neurons in the dorsal root ganglia (DRG) convey sensations of pain and itch to the spinal cord, respectively. One subtype of mature DRG neurons, comprising 6% to 8% of neurons in the ganglia, is responsible for sensing mediators of acute itch and atopic dermatitis, including the cytokine IL-31. How itch-sensitive (pruriceptive) neurons are specified is unclear. Here, we show that transmembrane protein 184B (TMEM184B), a protein with roles in axon degeneration and nerve terminal maintenance, is required for the expression of a large cohort of itch receptors, including those for interleukin 31 (IL-31), leukotriene C4, and histamine. Male and female mice lacking TMEM184B show reduced responses to IL-31 but maintain normal responses to pain and mechanical force, indicating a specific behavioral defect in IL-31-induced pruriception. Calcium imaging experiments indicate that a reduction in IL-31-induced calcium entry is a likely contributor to this phenotype. We identified an early failure of proper Wnt-dependent transcriptional signatures and signaling components in Tmem184b mutant mice that may explain the improper DRG neuronal subtype specification. Accordingly, lentiviral re-expression of TMEM184B in mutant embryonic neurons restores Wnt signatures. Together, these data demonstrate that TMEM184B promotes adult somatosensation through developmental Wnt signaling and promotion of proper pruriceptive gene expression. Our data illuminate a new key regulatory step in the processes controlling the establishment of diversity in the somatosensory system.
Assuntos
Cálcio , Prurido , Animais , Cálcio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Humanos , Interleucinas/efeitos adversos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos , Dor/metabolismo , Prurido/metabolismoRESUMO
Idiosyncratic drug reactions are unpredictable adverse reactions. Although most such adverse reactions appear to be immune mediated, their exact mechanism(s) remain elusive. The idiosyncratic drug reaction most associated with serious consequences is idiosyncratic drug-induced liver injury (IDILI). We have developed a mouse model of amodiaquine (AQ)-induced liver injury that reflects the clinical characteristics of IDILI in humans. This was accomplished by impairing immune tolerance by using PD-1-/- mice and an antibody against CTLA-4. PD-1 and CTLA-4 are known negative regulators of lymphocyte activation, which promote immune tolerance. Immune checkpoint inhibitors have become important tools for the treatment of cancer. However, as in our model, immune checkpoint inhibitors increase the risk of IDILI with drugs that have an incidence of causing liver injury. Agents such as 1-methyl-d-tryptophan (D-1-MT), an inhibitor of the immunosuppressive indoleamine 2,3-dioxygenase (IDO) enzyme, have also been proposed as anti-cancer treatments. Another possible risk factor for the induction of an immune response is the release of danger-associated molecular patterns (DAMPs). Acetaminophen (APAP) is known to cause acute liver injury, and it is likely to cause the release of DAMPs. Therefore, either of these agents could increase the risk of IDILI, although through different mechanisms. If true, then this would have clinical implications. We found that co-treatment with D-1-MT paradoxically decreased liver injury in our model, and although APAP appeared to slightly increase AQ-induced liver injury, the difference was not significant. Such results highlight the complexity of the immune response, which makes potential interactions difficult to predict.