Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Noninvasive Electrocardiol ; 26(3): e12839, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33719135

RESUMO

INTRODUCTION: The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. METHODS AND RESULTS: This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12-lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. CONCLUSION: The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.


Assuntos
Inteligência Artificial , Eletrocardiografia/métodos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Desequilíbrio Hidroeletrolítico/diagnóstico
2.
J Electrocardiol ; 67: 124-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225095

RESUMO

BACKGROUND: Early detection and intervention is the cornerstone for appropriate treatment of arrhythmia and prevention of complications and mortality. Although diverse deep learning models have been developed to detect arrhythmia, they have been criticized due to their unexplainable nature. In this study, we developed an explainable deep learning model (XDM) to classify arrhythmia, and validated its performance using diverse external validation data. METHODS: In this retrospective study, the Sejong dataset comprising 86,802 electrocardiograms (ECGs) was used to develop and internally variate the XDM. The XDM based on a neural network-backed ensemble tree was developed with six feature modules that are able to explain the reasons for its decisions. The model was externally validated using data from 36,961 ECGs from four non-restricted datasets. RESULTS: During internal and external validation of the XDM, the average area under the receiver operating characteristic curves (AUCs) using a 12­lead ECG for arrhythmia classification were 0.976 and 0.966, respectively. The XDM outperformed a previous simple multi-classification deep learning model that used the same method. During internal and external validation, the AUCs of explainability were 0.925-0.991. CONCLUSION: Our XDM successfully classified arrhythmia using diverse formats of ECGs and could effectively describe the reason for the decisions. Therefore, an explainable deep learning methodology could improve accuracy compared to conventional deep learning methods, and that the transparency of XDM can be enhanced for its application in clinical practice.


Assuntos
Aprendizado Profundo , Algoritmos , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Humanos , Estudos Retrospectivos
3.
J Phys Chem Lett ; 15(4): 983-997, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252652

RESUMO

Hafnia-based ferroelectrics and their semiconductor applications are reviewed, focusing on next-generation dynamic random-access-memory (DRAM) and Flash. The challenges of achieving high endurance and high write/read speed and the optimal material properties to achieve them are discussed. In DRAM applications, the trade-off between remanent polarization (Pr), endurance, and operation speed is highlighted, focusing on reducing the critical material property Ec (coercive field). Novel phase formation and interfacial redox chemistry are reviewed as potential game-changers for ferroelectric memories. Regarding Flash operation, the need for an ideal Pr and Ec ratio is emphasized, as excessive Pr can lead to charge trapping, resulting in fatigue and pass disturbance in the NAND array. Achieving the right balance of Pr and Ec for ferroelectric NAND with hafnia-based ferroelectrics remains challenging. This Perspective also recognizes technical advancements in FeFET technology, offering potential solutions for improved performance and casting a positive outlook on the future of ferroelectric memory technology.

4.
Mater Horiz ; 11(21): 5251-5264, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39364578

RESUMO

A self-rectifying ferroelectric tunnel junction that employs a HfO2/ZrO2/HfO2 superlattice (HZH SL) combined with Al2O3 and TiO2 layers is proposed. The 6 nm-thick HZH SL effectively suppresses the formation of non-ferroelectric phases while increasing remnant polarization (Pr). This enlarged Pr modulates the energy barrier configuration, consequently achieving a large on/off ratio of 1273 by altering the conduction mechanism from off-state thermal injection to on-state Fowler-Nordheim tunneling. Moreover, the asymmetric Schottky barriers at the top TiN/TiO2 and bottom HfO2/Pt interfaces enable a self-rectifying property with a rectifying ratio of 1550. Through calculations and simulations it is found that the device demonstrates potential for achieving an integrated array size exceeding 7k while maintaining a 10% read margin, and shows potential for application in artificial synapses for neuromorphic computing with an image recognition accuracy above 92%. Finally, the self-rectifying behavior and device-to-device variation reliability are confirmed in a 9 × 9 crossbar array structure.

5.
Int Urol Nephrol ; 54(10): 2733-2744, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35403974

RESUMO

PURPOSE: Although renal failure is a major healthcare burden globally and the cornerstone for preventing its irreversible progression is an early diagnosis, an adequate and noninvasive tool to screen renal impairment (RI) reliably and economically does not exist. We developed an interpretable deep learning model (DLM) using electrocardiography (ECG) and validated its performance. METHODS: This retrospective cohort study included two hospitals. We included 115,361 patients who had at least one ECG taken with an estimated glomerular filtration rate measurement within 30 min of the index ECG. A DLM was developed using 96,549 ECGs of 55,222 patients. The internal validation included 22,949 ECGs of 22,949 patients. Furthermore, we conducted an external validation with 37,190 ECGs of 37,190 patients from another hospital. The endpoint was to detect a moderate to severe RI (estimated glomerular filtration rate < 45 ml/min/1.73m2). RESULTS: The area under the receiver operating characteristic curve (AUC) of a DLM using a 12-lead ECG for detecting RI during the internal and external validation was 0.858 (95% confidence interval 0.851-0.866) and 0.906 (0.900-0.912), respectively. In the initial evaluation of 25,536 individuals without RI patients whose DLM was defined as having a higher risk had a significantly higher chance of developing RI than those in the low-risk group (17.2% vs. 2.4%, p < 0.001). The sensitivity map indicated that the DLM focused on the QRS complex and T-wave for detecting RI. CONCLUSION: The DLM demonstrated high performance for RI detection and prediction using 12-, 6-, single-lead ECGs.


Assuntos
Inteligência Artificial , Insuficiência Renal , Diagnóstico Precoce , Eletrocardiografia , Humanos , Insuficiência Renal/diagnóstico , Estudos Retrospectivos
6.
Scand J Trauma Resusc Emerg Med ; 29(1): 145, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602084

RESUMO

BACKGROUND: Sepsis is a life-threatening organ dysfunction and a major healthcare burden worldwide. Although sepsis is a medical emergency that requires immediate management, screening for the occurrence of sepsis is difficult. Herein, we propose a deep learning-based model (DLM) for screening sepsis using electrocardiography (ECG). METHODS: This retrospective cohort study included 46,017 patients who were admitted to two hospitals. A total of 1,548 and 639 patients had sepsis and septic shock, respectively. The DLM was developed using 73,727 ECGs from 18,142 patients, and internal validation was conducted using 7774 ECGs from 7,774 patients. Furthermore, we conducted an external validation with 20,101 ECGs from 20,101 patients from another hospital to verify the applicability of the DLM across centers. RESULTS: During the internal and external validations, the area under the receiver operating characteristic curve (AUC) of the DLM using 12-lead ECG was 0.901 (95% confidence interval, 0.882-0.920) and 0.863 (0.846-0.879), respectively, for screening sepsis and 0.906 (95% confidence interval (CI), 0.877-0.936) and 0.899 (95% CI, 0.872-0.925), respectively, for detecting septic shock. The AUC of the DLM for detecting sepsis using 6-lead and single-lead ECGs was 0.845-0.882. A sensitivity map revealed that the QRS complex and T waves were associated with sepsis. Subgroup analysis was conducted using ECGs from 4,609 patients who were admitted with an infectious disease, and the AUC of the DLM for predicting in-hospital mortality was 0.817 (0.793-0.840). There was a significant difference in the prediction score of DLM using ECG according to the presence of infection in the validation dataset (0.277 vs. 0.574, p < 0.001), including severe acute respiratory syndrome coronavirus 2 (0.260 vs. 0.725, p = 0.018). CONCLUSIONS: The DLM delivered reasonable performance for sepsis screening using 12-, 6-, and single-lead ECGs. The results suggest that sepsis can be screened using not only conventional ECG devices but also diverse life-type ECG machines employing the DLM, thereby preventing irreversible disease progression and mortality.


Assuntos
COVID-19 , Aprendizado Profundo , Sepse , Eletrocardiografia , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Sepse/diagnóstico
7.
Eur Heart J Digit Health ; 2(2): 290-298, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36712389

RESUMO

Aims: Paroxysmal supraventricular tachycardia (PSVT) is not detected owing to its paroxysmal nature, but it is associated with the risk of cardiovascular disease and worsens the patient quality of life. A deep learning model (DLM) was developed and validated to identify patients with PSVT during normal sinus rhythm in this multicentre retrospective study. Methods and results: This study included 12 955 patients with normal sinus rhythm, confirmed by a cardiologist. A DLM was developed using 31 147 electrocardiograms (ECGs) of 9069 patients from one hospital. We conducted an accuracy test with 13 753 ECGs of 3886 patients from another hospital. The DLM was developed based on residual neural network. Digitally stored ECG were used as predictor variables and the outcome of the study was ability of the DLM to identify patients with PSVT using an ECG during sinus rhythm. We employed a sensitivity map method to identify an ECG region that had a significant effect on developing PSVT. During accuracy test, the area under the receiver operating characteristic curve of a DLM using a 12-lead ECG for identifying PSVT patients during sinus rhythm was 0.966 (0.948-0.984). The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of DLM were 0.970, 0.868, 0.972, 0.255, and 0.998, respectively. The DLM showed delta wave and QT interval were important to identify the PSVT. Conclusion: The proposed DLM demonstrated a high performance in identifying PSVT during normal sinus rhythm. Thus, it can be used as a rapid, inexpensive, point-of-care means of identifying PSVT in patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA