Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(9): 097601, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793851

RESUMO

High piezoelectric activity of many ferroelectrics has been the focus of numerous recent studies. The structural origin of this activity remains poorly understood due to a lack of appropriate experimental techniques and mixing of different mechanisms related to ferroelectricity and ferroelasticity. Our work reports on the study of a uniaxial Sr_{0.5}Ba_{0.5}Nb_{2}O_{6} ferroelectric where the formation of regions with different spontaneous strains is ruled out by the symmetry and where the interrelation between piezoelectricity and ferroelectricity can be inspected in an isolated fashion. We performed x-ray diffraction experiments on a single crystalline sample under alternating electric field and observed an unknown hidden-in-the-bulk mechanism, which suggests that the highest piezoelectric activity is realized in the volumes where nucleation of small ferroelectric domains takes place. This new mechanism creates a novel roadmap for designing materials with enhanced piezoelectric properties.

2.
Rev Sci Instrum ; 91(2): 021301, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113442

RESUMO

A 300 keV transmission electron microscope was modified to produce broadband pulsed beams that can be, in principle, between 40 MHz and 12 GHz, corresponding to temporal resolution in the nanosecond to picosecond range without an excitation laser. The key enabling technology is a pair of phase-matched modulating and de-modulating traveling wave metallic comb striplines (pulsers). An initial temporal resolution of 30 ps was achieved with a strobe frequency of 6.0 GHz. The placement of the pulsers, mounted immediately below the gun, allows for preservation of all optical configurations, otherwise available to the unmodified instrument, and therefore makes such a post-modified instrument for dual-use, i.e., both pulsed-beam mode (i.e., stroboscopic time-resolved) and conventional continuous waveform mode. In this article, we describe the elements inserted into the beam path, challenges encountered during integration with an in-service microscope, and early results from an electric-field-driven pump-probe experiment. We conclude with ideas for making this class of instruments broadly applicable for examining cyclical and repeatable phenomena.

3.
IUCrJ ; 5(Pt 4): 417-427, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30002843

RESUMO

The relationship between crystal structure and physical properties in the ferroelectric Na0.5Bi0.5TiO3 (NBT) has been of interest for the last two decades. Originally, the average structure was held to be of rhombohedral (R3c) symmetry with a fixed polarization direction. This has undergone a series of revisions, however, based on high-resolution X-ray diffraction, total neutron scattering, and optical and electron microscopy. The recent experimental findings suggest that the true average symmetry is monoclinic (space group Cc), which allows for a rotatable spontaneous polarization. Neither polarization rotation nor its potentially important real role in enhanced piezoelectricity is well understood. The present work describes an in situ investigation of the average monoclinic distortion in NBT by time-resolved single-crystal X-ray diffraction under external electric fields. The study presents a high-resolution inspection of the characteristic diffraction features of the monoclinic distortion - splitting of specific Bragg reflections - and their changes under a cyclic electric field. The results favour a model in which there is direct coupling between the shear monoclinic strain and the polarization rotation. This suggests that the angle of polarization rotation under a sub-coercive electric field could be 30° or more.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA