Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008901

RESUMO

Abnormalities in animals cloned via somatic cell nuclear transfer (SCNT) have been reported. In this study, to produce bomb-sniffing dogs, we successfully cloned four healthy dogs through SCNT using the same donor genome from the skin of a male German shepherd old dog. Veterinary diagnosis (X-ray/3D-CT imaging) revealed that two cloned dogs showed normal phenotypes, whereas the others showed abnormal shortening of the mandible (brachygnathia inferior) at 1 month after birth, even though they were cloned under the same conditions except for the oocyte source. Therefore, we aimed to determine the genetic cause of brachygnathia inferior in these cloned dogs. To determine the genetic defects related to brachygnathia inferior, we performed karyotyping and whole-genome sequencing (WGS) for identifying small genetic alterations in the genome, such as single-nucleotide variations or frameshifts. There were no chromosomal numerical abnormalities in all cloned dogs. However, WGS analysis revealed variants of Wnt signaling pathway initiators (WNT5B, DVL2, DACT1, ARRB2, FZD 4/8) and cadherin (CDH11, CDH1like) in cloned dogs with brachygnathia inferior. In conclusion, this study proposes that brachygnathia inferior in cloned dogs may be associated with variants in initiators and/or regulators of the Wnt/cadherin signaling pathway.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/veterinária , Clonagem de Organismos , Via de Sinalização Wnt/genética , Anormalidades Múltiplas/sangue , Anormalidades Múltiplas/diagnóstico , Animais , Contagem de Células Sanguíneas , Aberrações Cromossômicas , Cães , Comportamento Alimentar , Ontologia Genética , Redes Reguladoras de Genes , Estudos de Associação Genética , Cariotipagem , Masculino , Repetições de Microssatélites/genética , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
2.
BMC Genomics ; 22(1): 801, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743693

RESUMO

BACKGROUND: DNA methylation and demethylation at CpG islands is one of the main regulatory factors that allow cells to respond to different stimuli. These regulatory mechanisms help in developing tissue without affecting the genomic composition or undergoing selection. Liver and backfat play important roles in regulating lipid metabolism and control various pathways involved in reproductive performance, meat quality, and immunity. Genes inside these tissue store a plethora of information and an understanding of these genes is required to enhance tissue characteristics in the future generation. RESULTS: A total of 16 CpG islands were identified, and they were involved in differentially methylation regions (DMRs) as well as differentially expressed genes (DEGs) of liver and backfat tissue samples. The genes C7orf50, ACTB and MLC1 in backfat and TNNT3, SIX2, SDK1, CLSTN3, LTBP4, CFAP74, SLC22A23, FOXC1, GMDS, GSC, GATA4, SEMA5A and HOXA5 in the liver, were categorized as differentially-methylated. Subsequently, Motif analysis for DMRs was performed to understand the role of the methylated motif for tissue-specific differentiation. Gene ontology studies revealed association with collagen fibril organization, the Bone Morphogenetic Proteins (BMP) signaling pathway in backfat and cholesterol biosynthesis, bile acid and bile salt transport, and immunity-related pathways in methylated genes expressed in the liver. CONCLUSIONS: In this study, to understand the role of genes in the differentiation process, we have performed whole-genome bisulfite sequencing (WGBS) and RNA-seq analysis of Nanchukmacdon pigs. Methylation and motif analysis reveals the critical role of CpG islands and transcriptional factors binding site (TFBS) in guiding the differential patterns. Our findings could help in understanding how methylation of certain genes plays an important role and can be used as biomarkers to study tissue specific characteristics.


Assuntos
Metilação de DNA , Genoma , Animais , Ilhas de CpG , Fígado/metabolismo , RNA-Seq , Suínos/genética
3.
Funct Integr Genomics ; 20(1): 117-131, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31396752

RESUMO

The estrous cycle is a complex process regulated by several hormones. To understand the dynamic changes in gene expression that takes place in the swine endometrium during the estrous cycle relative to the day of estrus onset, we performed RNA-sequencing analysis on days 0, 3, 6, 9, 12, 15, and 18, resulting in the identification of 4495 differentially expressed genes (DEGs; Q ≤ 0.05 and |log2FC| ≥ 1) at various phases in the estrous cycle. These DEGs were integrated into multiple gene co-expression networks based on different fold changes and correlation coefficient (R2) thresholds and a suitable network, which included 899 genes (|log2FC| ≥ 2 and R2 ≥ 0.99), was identified for downstream analyses based on the biological relevance of the Gene Ontology (GO) terms enriched. The genes in this network were partitioned into 6 clusters based on the expression pattern. Several GO terms including cell cycle, apoptosis, hormone signaling, and lipid biosynthetic process were found to be enriched. Furthermore, we found 15 significant KEGG pathways, including cell adhesion molecules, cytokine-cytokine receptor signaling, steroid biosynthesis, and estrogen signaling pathways. We identified several genes and GO terms to be stage-specific. Moreover, the identified genes and pathways extend our understanding of porcine endometrial regulation during estrous cycle and will serve as a good resource for future studies.


Assuntos
Endométrio/metabolismo , Ciclo Estral/genética , Sus scrofa/genética , Animais , Apoptose/genética , Feminino , Ontologia Genética , Redes Reguladoras de Genes , RNA-Seq , Sus scrofa/metabolismo
4.
BMC Genet ; 20(1): 66, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382890

RESUMO

BACKGROUND: The Sapsaree is a breed of dog (Canis familiaris) native to Korea, which became perilously close to extinction in the mid-1980s. However, with systematic genetic conservation and restoration efforts, this breed was rescued from extinction and population sizes have been gradually increasing over the past few decades. The aim of this study was to ascertain novel information about the genetic diversity, population structure, and demographic history of the Sapsaree breed using genome-wide single nucleotide polymorphism data. We characterized the genetic profile of the Sapsaree breed by comparison with seven foreign dog breeds with similar morphologies to estimate genetic differentiation within and among these breeds. RESULTS: The results suggest that Sapsarees have higher genetic variance compared with the other breeds analyzed. The majority of the Sapsarees in this study share a discrete genetic pattern, although some individuals were slightly different, possibly as a consequence of the recent restoration process. Concordant results from analyses of linkage disequilibrium, effective population size, genetic diversity, and population structural analyses illustrate a relationship among the Sapsaree and the Tibetan breeds Tibetan terrier and Lhasa Apso, and a small genetic introgression from European breeds. The effective population size of the Sapsaree has contracted dramatically over the past generations, and is currently insufficient to maintain long-term viability of the breed's genetic diversity. CONCLUSIONS: This study provides novel insights regarding the genetic diversity and population structure of the native Korean dog breed Sapsaree. Our results suggest the importance of a strategic and systematic approach to ensure the genetic diversity and the authenticity of the Sapsaree breed.


Assuntos
Variação Genética , Genética Populacional , Animais , Cruzamento , Cães , Heterozigoto , Desequilíbrio de Ligação , Filogenia , Polimorfismo de Nucleotídeo Único , República da Coreia
5.
BMC Genet ; 19(1): 37, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843617

RESUMO

BACKGROUND: Identification of genetic mechanisms and idiosyncrasies at the breed-level can provide valuable information for potential use in evolutionary studies, medical applications, and breeding of selective traits. Here, we analyzed genomic data collected from 136 Korean Native cattle, known as Hanwoo, using advanced statistical methods. RESULTS: Results revealed Hanwoo-specific protein domains which were largely characterized by immunoglobulin function. Furthermore, domain interactions of novel Hanwoo-specific genes reveal additional links to immunity. Novel Hanwoo-specific genes linked to muscle and other functions were identified, including protein domains with functions related to energy, fat storage, and muscle function that may provide insight into the mechanisms behind Hanwoo cattle's uniquely high percentage of intramuscular fat and fat marbling. CONCLUSION: The identification of Hanwoo-specific genes linked to immunity are potentially useful for future medical research and selective breeding. The significant genomic variations identified here can crucially identify genetic novelties that are arising from useful adaptations. These results will allow future researchers to compare and classify breeds, identify important genetic markers, and develop breeding strategies to further improve significant traits.


Assuntos
Bovinos/genética , Bovinos/imunologia , Imunidade/genética , Seleção Genética , Animais , Sequência de Bases/genética , Mapeamento Cromossômico , Imunoglobulinas/genética , Anotação de Sequência Molecular , Domínios Proteicos/genética , República da Coreia , Sequenciamento Completo do Genoma/métodos
6.
Asian-Australas J Anim Sci ; 31(4): 473-479, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29059723

RESUMO

OBJECTIVE: The study was designed to perform a genome-wide association (GWA) and partitioning of genome using Illumina's PorcineSNP60 Beadchip in order to identify variants and determine the explained heritability for the total number of teats in Yorkshire pig. METHODS: After screening with the following criteria: minor allele frequency, MAF≤0.01; Hardy-Weinberg equilibrium, HWE≤0.000001, a pair-wise genomic relationship matrix was produced using 42,953 single nucleotide polymorphisms (SNPs). A genome-wide mixed linear model-based association analysis (MLMA) was conducted. And for estimating the explained heritability with genome- or chromosome-wide SNPs the genetic relatedness estimation through maximum likelihood approach was used in our study. RESULTS: The MLMA analysis and false discovery rate p-values identified three significant SNPs on two different chromosomes (rs81476910 and rs81405825 on SSC8; rs81332615 on SSC13) for total number of teats. Besides, we estimated that 30% of variance could be explained by all of the common SNPs on the autosomal chromosomes for the trait. The maximum amount of heritability obtained by partitioning the genome were 0.22±0.05, 0.16±0.05, 0.10±0.03 and 0.08±0.03 on SSC7, SSC13, SSC1, and SSC8, respectively. Of them, SSC7 explained the amount of estimated heritability along with a SNP (rs80805264) identified by genome-wide association studies at the empirical p value significance level of 2.35E-05 in our study. Interestingly, rs80805264 was found in a nearby quantitative trait loci (QTL) on SSC7 for the teat number trait as identified in a recent study. Moreover, all other significant SNPs were found within and/or close to some QTLs related to ovary weight, total number of born alive and age at puberty in pigs. CONCLUSION: The SNPs we identified unquestionably represent some of the important QTL regions as well as genes of interest in the genome for various physiological functions responsible for reproduction in pigs.

7.
BMC Genet ; 17(1): 139, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765013

RESUMO

BACKGROUND: The native cattle breeds are an important genetic resource for meat and milk production throughout Asia. In Asia cattle were domesticated around 10,000 years ago and in Korea cattle are being raised since 2000 B.C. There are three native breeds of cattle in Korea viz. Brown Hanwoo, Brindle Hanwoo and Jeju Black. While one of these breeds, Brown Hanwoo, is a part of a Food and Agricultural Organization and national genetic evaluation plans, others get little attention. This study is an effort to understand and provide a detailed insight into the population structure and genetic variability of the Korean cattle breeds along with other Asian breeds using various methods. In this study we report the genetic variation and structure of the Korean cattle breeds and their comparison with five other Asian cattle breeds along with a panel of animals from European taurine, African taurine and indicine cattle breeds. RESULTS: Asian cattle were found to be least differentiated which reflects their recent history. Amongst the Asian breeds Hainan, which is an indicine breed, had the lowest gene diversity while Yanbian had the highest followed by Mongolian and Korean cattle. Amongst the Korean breeds Brown Hanwoo had the highest diversity followed by Brindle Hanwoo and Jeju Black. The genetic diversity in Asian cattle breeds was found comparable to the European taurines and more than the African taurines and Zebu cattle. Korean cattle breed, Brown Hanwoo was consistently found to be closer to Yanbian, a Chinese cattle breed. We found low divergence and moderate levels of genetic diversity among the native Korean breeds. Indicine introgression from Hainan was seen in other Asian breeds. From Europe, Limousin, Holstein and Hereford introgression was found in Asian breeds. CONCLUSIONS: In this study we provide a genome-wide insight into the genetic history of the native cattle breeds of Korea. The outcomes of this study will help in prioritization and designing of the conservation plans.

8.
Asian-Australas J Anim Sci ; 29(1): 23-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26732324

RESUMO

The Fas (APO-1, TNFRSF6) gene known as a member of the tumor necrosis factor receptor superfamily was selected for DNA marker development in Korean cattle. It is a cell membrane protein and mediates programmed cell death (apoptosis). We discovered single nucleotide polymorphisms (SNPs) within Fas gene in order to develop novel DNA markers related to economical traits at the genomic level. The sequences of whole exon and 1 kb range of both front and back of the gene were determined by direct-sequencing methods using 24 cattle. A total of 55 SNPs were discovered and we selected 31 common polymorphic sites considering their allele frequencies, haplotype-tagging status and linkage disequilibrium (LD) for genotyping in larger-scale subjects. The SNPs were confirmed genotype through the SNaPshot method (n = 274) and were examined for a possible genetic association between Fas polymorphisms and marbling score. So, the SNPs that were identified significant are g.30256G>C, g.31474C>A, g.31940A>G, and g.32982G>A. These results suggest that SNPs of Fas gene were associated with intramuscular fat content of meat quality traits in Korean cattle.

9.
Molecules ; 19(9): 14316-51, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215589

RESUMO

HCV-induced CAPN activation and its effects on virus-infected cells in a host-immune system have been studied recently. It has been shown that the HCV-nonstructural 5A protein acts as both an inducer and a substrate for host CAPN protease; it participates in suppressing the TNF-α-induced apoptosis response and downstream IFN-induced antiviral processes. However, little is known regarding the disturbance of antiviral responses generated by bovine CAPN activation by BVDV, which is a surrogate model of HCV and is one of the most destructive diseases leading to great economic losses in cattle herds worldwide. This is also thought to be associated with the effects of either small CAPN inhibitors or the natural inhibitor CAST. They mainly bind to the binding site of CAPN substrate proteins and competitively inhibit the binding of the enzyme substrates to possibly defend against the two viruses (HCV and BVDV) for anti-viral immunity. To devise a new stratagem to discover lead candidates for an anti-BVDV drug, we first attempted to understand the bovine CAPN-CAST interaction sites and the interaction constraints of local binding architectures, were well reflected in the geometry between the pharmacophore features and its shape constraints identified using our modeled bovine CAPN1/CAST4 complex structures. We propose a computer-aided molecular design of an anti-BVDV drug as a mimetic CAST inhibitor to develop a rule-based screening function for adjusting the puzzle of relationship between bovine CAPN1 and the BVDV nonstructural proteins from all of the data obtained in the study.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/metabolismo , Proteínas de Ligação ao Cálcio/química , Calpaína/química , Modelos Moleculares , Animais , Sítios de Ligação , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/metabolismo , Bovinos , Vírus da Diarreia Viral Bovina/química , Vírus da Diarreia Viral Bovina/patogenicidade , Humanos , Complexos Multiproteicos/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
10.
Genomics ; 100(3): 195-202, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22728265

RESUMO

We report a systematic study of gene expression during myogenesis and transdifferentiation in four bovine muscle tissues and of adipogenesis in three bovine fat tissues using DNA microarray analysis. One hundred hybridizations were performed and 7245 genes of known and unknown function were identified as being differentially expressed. Supervised hierarchical cluster analysis of gene expression patterns revealed the tissue specificity of genes. A close relationship in global gene expression observed for adipocyte-like cells derived from muscle and adipocytes derived from intramuscular fat suggests a common origin for these cells. The role of transthyretin in myogenesis is a novel finding. Different genes were highly induced during the transdifferentiation of myogenic satellite cells and in the adipogenesis of preadipocytes, indicating the involvement of different molecular mechanisms in these processes. Induction of CD36 and FABP4 expression in adipocyte-like cells and adipocytes may share a common pathway.


Assuntos
Adipócitos/citologia , Adipogenia , Transdiferenciação Celular , Regulação da Expressão Gênica , Células Satélites de Músculo Esquelético/citologia , Transcriptoma , Adipócitos/metabolismo , Animais , Bovinos , Células Cultivadas , Meios de Cultura/metabolismo , Desenvolvimento Muscular , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Pré-Albumina/genética , Pré-Albumina/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Gordura Subcutânea Abdominal/citologia , Gordura Subcutânea Abdominal/metabolismo , Regulação para Cima
11.
Asian-Australas J Anim Sci ; 26(11): 1523-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25049737

RESUMO

To increase plumage color uniformity and understand the genetic background of Korean chickens, we performed a genome-wide association study of different plumage color in Korean native chickens. We analyzed 60K SNP chips on 279 chickens with GEMMA methods for GWAS and estimated the genetic heritability for plumage color. The estimated heritability suggests that plumage coloration is a polygenic trait. We found new loci associated with feather pigmentation at the genome-wide level and from the results infer that there are additional genetic effect for plumage color. The results will be used for selecting and breeding chicken for plumage color uniformity.

12.
Anim Biosci ; 36(6): 962-972, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36634653

RESUMO

OBJECTIVE: This study determined the effects of dietary treatments and castration on meat quality, fatty acids (FAs) profiles, and volatile compounds in Korean native black goats (KNBG, Capra hircus coreanae), including the relationship between the population of rumen microbiomes and meat FA profiles. METHODS: Twenty-four KNBG (48.6±1.4 kg) were randomly allocated to one of four treatments arranged into a 2×2 factorial structure. The factors were dietary forage to concentrate ratio (high forage [HF, 80:20] and low forage [LF, 20:80]), and a castration treatment (castration [CA] vs non-castration [NCA]). RESULTS: Among meat quality traits, the CA group exhibited a higher percentage of crude fat and water holding capacity (p<0.05). The profiles of the saturated fatty acid (SFA) in meat sample derived from CA KNBG showed a significantly lower percentage compared to NCA individuals, due to the lower proportion of C14:0 and C18:0. Feeding a high-forage diet to KNBG increased the formation of C18:1n7, C18:3n3, C20:1n9, C22:4n6 in meat, and polyunsaturated fatty acid (PUFA) profiles (p<0.05). Consequently, the n6:n3 ratio declined (p<0.05). There was an interaction between dietary treatment and castration for formation of C20:5n3 (p<0.05), while C18:1n9, C22:6n3, monounsaturated fatty acid (MUFA) and the MUFA:SFA ratio were influenced by both diet and castration (p<0.05). Nine volatile compounds were identified and were strongly influenced by both dietary treatments, castration (p<0.05), and their interaction. In addition, principal component analysis (PCA) revealed distinctly different odor patterns in the NCA goats fed LF diets. Spearman correlation analysis showed a high correlation between rumen bacteria and meat PUFAs. CONCLUSION: These results suggest the essential effects of the rumen microbial population for the synthesis of meat FAs and volatile compounds in KNBG meat, where dietary intake and castration also contribute substantially.

13.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889804

RESUMO

Successful dog cloning requires a sufficient number of in vivo matured oocytes as recipient oocytes for reconstructing embryos. The accurate prediction of the ovulation day in estrus bitches is critical for collecting mature oocytes. Traditionally, a specific serum progesterone (P4) range in the radioimmunoassay (RIA) system has been used for the prediction of ovulation. In this study, we investigated the use of an enzyme-linked fluorescence assay (ELFA) system for the measurement of P4. Serum samples of estrus bitches were analyzed using both RIA and ELFA, and the measured P4 values of ELFA were sorted into 11 groups based on the standard concentration measured in RIA and compared. In addition, to examine the tendency of changes in the P4 values in each system, the P4 values on ovulation day (from D - 6 to D + 1) in both systems were compared. The ELFA range of 5.0-12.0 ng/mL was derived from the RIA standard range of 4.0-8.0 ng/mL. The rates of acquired matured oocytes in RIA and ELFA were 55.47% and 65.19%, respectively. The ELFA system successfully produced cloned puppies after the transfer of the reconstructed cloned oocytes. Our findings suggest that the ELFA system is suitable for obtaining in vivo matured oocytes for dog cloning.

17.
Asian-Australas J Anim Sci ; 25(12): 1649-59, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25049529

RESUMO

Crosses between Korean and Landrace pigs have revealed a large quantitative trait loci (QTL) region for fat deposition in a region (89 cM) of porcine chromosome 4 (SSC4). To more finely map this QTL region and identify candidate genes for this trait, comparative mapping of pig and human chromosomes was performed in the present study. A region in the human genome that corresponds to the porcine QTL region was identified in HSA1q21. Furthermore, the LMNA gene, which is tightly associated with fat augmentation in humans, was localized to this region. Radiation hybrid (RH) mapping using a Sus scrofa RH panel localized LMNA to a region of 90.3 cM in the porcine genome, distinct from microsatellite marker S0214 (87.3 cM). Two-point analysis showed that LMNA was linked to S0214, SW1996, and S0073 on SSC4 with logarithm (base 10) of odds scores of 20.98, 17.78, and 16.73, respectively. To clone the porcine LMNA gene and to delineate the genomic structure and sequences, including the 3'untranslated region (UTR), rapid amplification of cDNA ends was performed. The coding sequence of porcine LMNA consisted of 1,719 bp, flanked by a 5'UTR and a 3'UTR. Two synonymous single nucleotide polymorphisms (SNPs) were identified in exons 3 and 7. Association tests showed that the SNP located in exon 3 (A193A) was significantly associated with weight at 30 wks (p<0.01) and crude fat content (p<0.05). This association suggests that SNPs located in LMNA could be used for marker-assisted selection in pigs.

18.
World J Mens Health ; 40(2): 316-329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35021315

RESUMO

PURPOSE: To build an age prediction model, we measured CD4+ and CD8+ cells, and humoral components in canine peripheral blood. MATERIALS AND METHODS: Large Belgian Malinois (BGM) and German Shepherd Dog (GSD) breeds (n=27), aged from 1 to 12 years, were used for this study. Peripheral bloods were obtained by venepuncture, then plasma and peripheral blood mononuclear cells (PBMCs) were separated immediately. Six myokines, including interleukin (IL)-6, IL-8, IL-15, leukemia inhibitory factor (LIF), growth differentiation factor 8 (GDF8), and GDF11 were measured from plasma and CD4+/CD8+ T-lymphocytes ratio were measured from PBMC. These parameters were then tested with age prediction models to find the best fit model. RESULTS: We found that the T-lymphocyte ratio (CD4+/CD8+) was significantly correlated with age (r=0.46, p=0.016). Among the six myokines, only GDF8 showed a significant correlation with age (r=0.52, p=0.005). Interestingly, these two markers showed better correlations in male dogs than females, and BGM breed than GSD. Using these two age biomarkers, we could obtain the best fit in a quadratic linear mixed model (r=0.77, p=3×10-6). CONCLUSIONS: Age prediction is a challenging task because of complication with biological age. Our quadratic linear mixed model using CD4+/CD8+ ratio and GDF8 level showed a meaningful age prediction.

19.
Anim Cells Syst (Seoul) ; 26(6): 358-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605592

RESUMO

Sex is a major biological factor in the development and physiology of a sexual reproductive organism, and its role in the growing process is needed to be investigated in various species. We compare blood transcriptome between 5 males and 5 females in 4-week-old Rhode Island Red chickens and perform functional annotation of differentially expressed genes (DEGs). The results are as follows. 141 and 109 DEGs were located in autosomes and sex chromosomes, respectively. The gene ontology (GO) terms are significantly (p < 0.05) enriched, which were limb development, inner ear development, positive regulation of dendrite development, the KEGG pathway the TGF-beta signaling pathway, and melanogenesis (p < 0.05). These pathways are related to morphological maintenance and growth of the tissues. In addition, the SMAD2W and the BMP5 were involved in the TGF-beta signaling pathway, and both play an important role in maintaining tissue development. The major DEGs related to the development of neurons and synapses include the up-regulated NRN1, GDF10, SLC1A1, BMP5, NBEA, and NRXN1. Also, 7 DEGs were validated using RT-qPCR with high correlation (r 2 = 0.74). In conclusion, the differential expression of blood tissue in the early growing chicken was enriched in TGF-beta signaling and related to the development of neurons and synapses including SMAD2W and BMP5. These results suggest that blood in the early growing stage is differentially affected in tissue development, nervous system, and pigmentation by sex. For future research, experimental characterization of DEGs and a holistic investigation of various tissues and growth stages will be required.

20.
Animals (Basel) ; 12(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230243

RESUMO

Gut microbiomes are well recognized to serve a variety of roles in health and disease, even though their functions are not yet completely understood. Previous studies have demonstrated that the microbiomes of juvenile and adult dogs have significantly different compositions and characteristics. However, there is still a scarcity of basic microbiome research in dogs. In this study, we aimed to advance our understanding by confirming the difference in fecal microbiome between young and adult dogs by analyzing the feces of 4-month and 16-month-old Jindo dogs, a domestic Korean breed. Microbiome data were generated and examined for the two age groups using 16S rRNA analysis. Comparison results revealed that the 16-month-old group presented a relatively high distribution of Bacteroides, whereas the 4-month-old group presented a comparatively high distribution of the Lactobacillus genus. Microbial function prediction analyses confirmed the relative abundance of lipid metabolism in 4-month-old dogs. In 16-month-old dogs, glucose metabolism was determined using microbial function prediction analyses. This implies that the functional microbiome changes similarly to the latter in adults compared with childhood. Overall, we discovered compositional and functional variations between genes of the gut microbial population in juveniles and adults. These microbial community profiles can be used as references for future research on the microbiome associated with health and development in the canine population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA