Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11522, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769102

RESUMO

Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/µL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.


Assuntos
DNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA/análise , DNA/genética , Centrifugação/métodos , Limite de Detecção
2.
J Biochem Mol Biol ; 37(5): 618-24, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15479627

RESUMO

All members of R. glutinosa show the unique characteristic of intrinsic tolerance to paraquat (PQ). Antioxidant enzymes have been proposed to be the primary mechanism of PQ resistance in several plant species. Therefore, the antioxidant enzyme systems of R. glutinosa were evaluated by comparatively analyzing cellular antioxidant enzyme levels, and their responses of oxidative stresses and hormones. The levels of ascorbate peroxidase (APX), glutathione reductase (GR), non-specific peroxidase (POX), and superoxide dismutase (SOD) were 7.3-, 4.9-, 2.7- and 1.6-fold higher in PQ-tolerant R. glutinosa than in PQ-susceptible soybeans. However, the activity of catalase (CAT) was about 12-fold higher in the soybeans. The activities of antioxidant enzymes reduced after PQ treatment in the two species, with the exception of POX and SOD in R. glutinosa, which increased by about 40 %. Interestingly, the activities of APX, SOD and POX in R. glutinosa, relative to those in soybeans, were further increased by 49, 67 and 93 % after PQ treatment. The considerably higher intrinsic levels, and increases in the relative activities of antioxidant enzymes in R. glutinosa under oxidative stress support the possible role of these enzymes in the PQ tolerance of R. glutinosa. However, the relatively lower levels of SOD versus PQ tolerance, and the mixed responses of antioxidant enzymes to stresses and hormones, suggest a possible alternative mechanism(s) for PQ tolerance in R. glutinosa.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo/fisiologia , Paraquat/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Rehmannia/enzimologia , Ascorbato Peroxidases , Catalase/metabolismo , Resistência a Medicamentos , Glutationa Redutase/metabolismo , Herbicidas/farmacologia , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Rehmannia/efeitos dos fármacos , Rehmannia/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/enzimologia , Glycine max/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA