Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(13): 2242-2259, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36849419

RESUMO

Substance use disorder is a chronic disease and a leading cause of disability around the world. The NAc is a major brain hub mediating reward behavior. Studies demonstrate exposure to cocaine is associated with molecular and functional imbalance in NAc medium spiny neuron subtypes (MSNs), dopamine receptor 1 and 2 enriched D1-MSNs and D2-MSNs. We previously reported repeated cocaine exposure induced transcription factor early growth response 3 (Egr3) mRNA in NAc D1-MSNs, and reduced it in D2-MSNs. Here, we report our findings of repeated cocaine exposure in male mice inducing MSN subtype-specific bidirectional expression of the Egr3 corepressor NGFI-A-binding protein 2 (Nab2). Using CRISPR activation and interference (CRISPRa and CRISPRi) tools combined with Nab2 or Egr3-targeted sgRNAs, we mimicked these bidirectional changes in Neuro2a cells. Furthermore, we investigated D1-MSN- and D2-MSN-specific expressional changes of histone lysine demethylases Kdm1a, Kdm6a, and Kdm5c in NAc after repeated cocaine exposure in male mice. Since Kdm1a showed bidirectional expression patterns in D1-MSNs and D2-MSNs, like Egr3, we developed a light-inducible Opto-CRISPR-KDM1a system. We were able to downregulate Egr3 and Nab2 transcripts in Neuro2A cells and cause similar bidirectional expression changes we observed in D1-MSNs and D2-MSNs of mouse repeated cocaine exposure model. Contrastingly, our Opto-CRISPR-p300 activation system induced the Egr3 and Nab2 transcripts and caused opposite bidirectional transcription regulations. Our study sheds light on the expression patterns of Nab2 and Egr3 in specific NAc MSNs in cocaine action and uses CRISPR tools to further mimic these expression patterns.SIGNIFICANCE STATEMENT Substance use disorder is a major societal issue. The lack of medication to treat cocaine addiction desperately calls for a treatment development based on precise understanding of molecular mechanisms underlying cocaine addiction. In this study, we show that Egr3 and Nab2 are bidirectionally regulated in mouse NAc D1-MSNs and D2-MSNs after repeated exposure to cocaine. Furthermore, histone lysine demethylations enzymes with putative EGR3 binding sites showed bidirectional regulation in D1- and D2-MSNs after repeated exposure to cocaine. Using Cre- and light-inducible CRISPR tools, we show that we can mimic this bidirectional regulation of Egr3 and Nab2 in Neuro2a cells.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Masculino , Camundongos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Epigenoma , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
2.
Mol Psychiatry ; 27(10): 3980-3991, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764708

RESUMO

Psychostimulant exposure alters the activity of ventral pallidum (VP) projection neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. We used RNA-sequencing to reveal alterations in the transcriptional landscape of the VP that are induced by cocaine self-administration in mice. We then probed gene expression in select VP neuronal subpopulations to isolate a circuit associated with cocaine intake. Finally, we used both overexpression and CRISPR-mediated knockdown to test the role of a gene target on cocaine-mediated behaviors as well as dendritic spine density. Our results showed that a large proportion (55%) of genes associated with structural plasticity were changed 24 h following cocaine intake. Among them, the transcription factor Nr4a1 (Nuclear receptor subfamily 4, group A, member 1, or Nur77) showed high expression levels. We found that the VP to mediodorsal thalamus (VP → MDT) projection neurons specifically were recapitulating this increase in Nr4a1 expression. Overexpressing Nr4a1 in VP → MDT neurons enhanced drug-seeking and drug-induced reinstatement, while Nr4a1 knockdown prevented self-administration acquisition and subsequent cocaine-mediated behaviors. Moreover, we showed that Nr4a1 negatively regulated spine dynamics in this specific cell subpopulation. Together, our study identifies for the first time the transcriptional mechanisms occurring in VP in drug exposure. Our study provides further understanding on the role of Nr4a1 in cocaine-related behaviors and identifies the crucial role of the VP → MDT circuit in drug intake and relapse-like behaviors.


Assuntos
Prosencéfalo Basal , Cocaína , Animais , Camundongos , Cocaína/metabolismo , Prosencéfalo Basal/metabolismo , Recompensa , Neurônios/metabolismo , Tálamo , Perfilação da Expressão Gênica
3.
Mol Psychiatry ; 25(1): 194-205, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30127472

RESUMO

Clinical studies frequently report that patients with major mental illness such as schizophrenia and bipolar disorder have co-morbid physical conditions, suggesting that systemic alterations affecting both brain and peripheral tissues might underlie the disorders. Numerous studies have reported elevated levels of anti-Toxoplasma gondii (T. gondii) antibodies in patients with major mental illnesses, but the underlying mechanism was unclear. Using multidisciplinary epidemiological, cell biological, and gene expression profiling approaches, we report here multiple lines of evidence suggesting that a major mental illness-related susceptibility factor, Disrupted in schizophrenia (DISC1), is involved in host immune responses against T. gondii infection. Specifically, our cell biology and gene expression studies have revealed that DISC1 Leu607Phe variation, which changes DISC1 interaction with activating transcription factor 4 (ATF4), modifies gene expression patterns upon T. gondii infection. Our epidemiological data have also shown that DISC1 607 Phe/Phe genotype was associated with higher T. gondii antibody levels in sera. Although further studies are required, our study provides mechanistic insight into one of the few well-replicated serological observations in major mental illness.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Esquizofrenia/imunologia , Esquizofrenia/microbiologia , Adulto , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/imunologia , Transtorno Bipolar/microbiologia , Encéfalo/metabolismo , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica , Genótipo , Humanos , Masculino , Transtornos Mentais/genética , Transtornos Mentais/imunologia , Transtornos Mentais/microbiologia , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Transdução de Sinais/fisiologia , Toxoplasma/imunologia , Toxoplasma/patogenicidade
4.
Am J Physiol Heart Circ Physiol ; 305(6): H803-10, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873798

RESUMO

Nitric oxide (NO) can modulate arterial stiffness by regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the cross-linking of matrix proteins. NO S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its cross-linking function latent. In the present study, the role of endothelial NO synthase (eNOS)-derived NO in regulating TG2 function was studied using eNOS knockout mice. Matrix-associated TG2 and TG2 cross-linking function were higher, whereas TG2 S-nitrosylation was lower in the eNOS(-/-) compared with wild-type (WT) mice. Pulse-wave velocity (PWV) and blood pressure measured noninvasively were elevated in the eNOS(-/-) compared with WT mice. Intact aortas and decellularized aortic tissue scaffolds of eNOS(-/-) mice were significantly stiffer, as determined by tensile testing. The carotid arteries of the eNOS(-/-) mice were also stiffer, as determined by pressure-dimension analysis. Invasive methods to determine the PWV-mean arterial pressure relationship showed that PWV in eNOS(-/-) and WT diverge at higher mean arterial pressure. Thus eNOS-derived NO regulates TG2 localization and function and contributes to vascular stiffness.


Assuntos
Aorta/fisiologia , Pressão Sanguínea/fisiologia , Endotélio Vascular/fisiologia , Proteínas de Ligação ao GTP/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Transglutaminases/biossíntese , Rigidez Vascular/fisiologia , Animais , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Estresse Mecânico , Resistência à Tração/fisiologia
5.
Biol Psychiatry ; 93(6): 489-501, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435669

RESUMO

BACKGROUND: Opioid discontinuation generates a withdrawal syndrome marked by increased negative affect. Increased symptoms of anxiety and dysphoria during opioid discontinuation are significant barriers to achieving long-term abstinence in opioid-dependent individuals. While adaptations in the nucleus accumbens are implicated in opioid abstinence syndrome, the precise neural mechanisms are poorly understood. Additionally, our current knowledge is limited to changes following natural and semisynthetic opioids, despite recent increases in synthetic opioid use and overdose. METHODS: We used a combination of cell subtype-specific viral labeling and electrophysiology in male and female mice to investigate structural and functional plasticity in nucleus accumbens medium spiny neuron (MSN) subtypes after fentanyl abstinence. We characterized molecular adaptations after fentanyl abstinence with subtype-specific RNA sequencing and weighted gene co-expression network analysis. We used viral-mediated gene transfer to manipulate the molecular signature of fentanyl abstinence in D1-MSNs. RESULTS: Here, we show that fentanyl abstinence increases anxiety-like behavior, decreases social interaction, and engenders MSN subtype-specific plasticity in both sexes. D1-MSNs, but not D2-MSNs, exhibit dendritic atrophy and an increase in excitatory drive. We identified a cluster of coexpressed dendritic morphology genes downregulated selectively in D1-MSNs that are transcriptionally coregulated by E2F1. E2f1 expression in D1-MSNs protects against loss of dendritic complexity, altered physiology, and negative affect-like behaviors caused by fentanyl abstinence. CONCLUSIONS: Our findings indicate that fentanyl abstinence causes unique structural, functional, and molecular changes in nucleus accumbens D1-MSNs that can be targeted to alleviate negative affective symptoms during abstinence.


Assuntos
Analgésicos Opioides , Fentanila , Camundongos , Masculino , Feminino , Animais , Fentanila/metabolismo , Núcleo Accumbens/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Camundongos Transgênicos
6.
Cureus ; 14(6): e26156, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35891875

RESUMO

Metastatic Klebsiella pneumoniae (MKP) is a rare, atypical presentation of Klebsiella syndrome. The disease primarily affects patients with underlying immunocompromised status, but its prevalence in immunocompetent patients without any underlying illness is rare. We present a rare case of MKP in a 41-year-old Caucasian male without prior comorbidities who presented with blurry vision and was found to have MKP. The current case report also discusses the diagnostic modalities, complications, and treatment options of MKP.

7.
Front Mol Biosci ; 9: 1080140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685285

RESUMO

Glutathione S-transferases (GST) are phase II detoxification enzymes of xenobiotic metabolism and readily expressed in the brain. Nevertheless, the current knowledge about their roles in the brain is limited. We have recently discovered that GSTM1 promotes the production of pro-inflammatory mediators by astrocytes and enhances microglial activation during acute brain inflammation. Here we report that GSTM1 significantly affects TNF-α-dependent transcriptional program in astrocytes and modulates neuronal activities and stress during brain inflammation. We have found that a reduced expression of GSTM1 in astrocytes downregulates the expression of pro-inflammatory genes while upregulating the expression of genes involved in interferon responses and fatty acid metabolism. Our data also revealed that GSTM1 reduction in astrocytes increased neuronal stress levels, attenuating neuronal activities during LPS-induced brain inflammation. Furthermore, we found that GSTM1 expression increased in the frontal cortex and hippocampus of aging mice. Thus, this study has further advanced our understanding of the role of Glutathione S-transferases in astrocytes during brain inflammation and paved the way for future studies to determine the critical role of GSTM1 in reactive astrocyte responses in inflammation and aging.

8.
Sensors (Basel) ; 11(6): 5661-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163919

RESUMO

In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more "fish-friendly" hydroelectric facilities.


Assuntos
Migração Animal , Imageamento Tridimensional/métodos , Rios , Salmão/fisiologia , Telemetria/instrumentação , Telemetria/métodos , Acústica , Algoritmos , Animais , Monitoramento Ambiental , Desenho de Equipamento , Distribuição Normal , Reprodutibilidade dos Testes , Software , Washington
9.
Sensors (Basel) ; 11(6): 5645-60, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163918

RESUMO

In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS.


Assuntos
Migração Animal , Rios , Salmão/fisiologia , Telemetria/instrumentação , Telemetria/métodos , Acústica , Animais , Monitoramento Ambiental , Desenho de Equipamento , Linguagens de Programação , Reprodutibilidade dos Testes , Software , Washington
10.
Sci Signal ; 12(569)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783009

RESUMO

Astrocytes and microglia play critical roles in brain inflammation. Here, we report that glutathione S-transferases (GSTs), particularly GSTM1, promote proinflammatory signaling in astrocytes and contribute to astrocyte-mediated microglia activation during brain inflammation. In vivo, astrocyte-specific knockdown of GSTM1 in the prefrontal cortex attenuated microglia activation in brain inflammation induced by systemic injection of lipopolysaccharides (LPS). Knocking down GSTM1 in astrocytes also attenuated LPS-induced production of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) by microglia when the two cell types were cocultured. In astrocytes, GSTM1 was required for the activation of nuclear factor κB (NF-κB) and the production of proinflammatory mediators, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif chemokine ligand 2 (CCL2), both of which enhance microglia activation. Our study suggests that GSTs play a proinflammatory role in priming astrocytes and enhancing microglia activation in a microglia-astrocyte positive feedback loop during brain inflammation.


Assuntos
Astrócitos/metabolismo , Encefalite/metabolismo , Glutationa Transferase/metabolismo , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Encefalite/genética , Encefalite/patologia , Feminino , Glutationa Transferase/genética , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/citologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos
11.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379874

RESUMO

Interleukin (IL)-33 is a member of the IL-1 family of cytokines. IL-33 is expressed in nuclei and secreted as alarmin upon cellular damage to deliver a danger signal to the surrounding cells. Previous studies showed that IL-33 is expressed in the brain and that it is involved in neuroinflammatory and neurodegenerative processes in both humans and rodents. Nevertheless, the role of IL-33 in physiological brain function and behavior remains unclear. Here, we have investigated the behaviors of mice lacking IL-33 (Il33-/- mice). IL-33 is constitutively expressed throughout the adult mouse brain, mainly in oligodendrocyte-lineage cells and astrocytes. Notably, Il33-/- mice exhibited reduced anxiety-like behaviors in the elevated plus maze (EPM) and the open field test (OFT), as well as deficits in social novelty recognition, despite their intact sociability, in the three-chamber social interaction test. The immunoreactivity of c-Fos proteins, an indicator of neuronal activity, was altered in several brain regions implicated in anxiety-related behaviors, such as the medial prefrontal cortex (mPFC), amygdala, and piriform cortex (PCX), in Il33-/- mice after the EPM. Altered c-Fos immunoreactivity in Il33-/- mice was not correlated with IL-33 expression in wild-type (WT) mice nor was IL-33 expression affected by the EPM in WT mice. Thus, our study has revealed that Il33-/- mice exhibit multiple behavioral deficits, such as reduced anxiety and impaired social recognition. Our findings also indicate that IL-33 may regulate the development and/or maturation of neuronal circuits, rather than control neuronal activities in adult brains.


Assuntos
Comportamento Animal/fisiologia , Interleucina-33/deficiência , Camundongos Knockout/psicologia , Animais , Ansiedade/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Interleucina-33/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reconhecimento Psicológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA