Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741453

RESUMO

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Assuntos
Inflamassomos , Toxoplasma , Camundongos , Animais , Humanos , Feminino , Gravidez , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Trofoblastos/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Placenta/metabolismo , RNA Interferente Pequeno , Caspases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas NLR/metabolismo
2.
Curr Issues Mol Biol ; 44(9): 4216-4228, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135201

RESUMO

Theobromine is mainly found in plant foods, such as tea; the primary source of theobromine is the seeds of the Theobroma cacao tree. Theobromine is an alkaloid belonging to the methylxanthine class of drugs, and it is similar to theophylline and caffeine. Theobromine is known for its efficacy and role in health and disorder prevention. We evaluated the effects of theobromine on macrophage function, including the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB). Theobromine significantly stimulated the production of nitric oxide (NO) and prostaglandin E2 through immune responses, which relate to the increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, theobromine increased the production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6 in macrophages. Additionally, theobromine induced the translocation and activity of NF-κB in a concentration-dependent manner. Consistent with these results, the phosphorylation level of MAPKs was increased in theobromine-stimulated macrophages. Collectively, these data revealed that theobromine acts as an immune response stimulator via the NF-κB and MAPKs signaling pathways. Thus, theobromine might have protective effects against inflammatory disorders.

3.
J Cell Mol Med ; 25(19): 9460-9472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464509

RESUMO

Fas-associated factor 1 (FAF1) has gained a reputation as a member of the FAS death-inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE-19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii-induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii-induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1-dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Fator Regulador 3 de Interferon/metabolismo , Toxoplasma/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Células Cultivadas , Imunofluorescência , Proteína Forkhead Box O1/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
4.
Korean J Parasitol ; 56(3): 301-304, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29996636

RESUMO

Rodents are important reservoirs of diseases affecting people and livestock, and are major sources of parasite contamination of agricultural products. We surveyed the infection status of intestinal helminths in 2 species of field mice, Apodemus agrarius and A. peninsulae, captured in the agricultural fields of Gangwon-do and Chungcheongnam-do, Korea. Total 83 mice (57 A. agrarius and 26 A. peninsulae) were collected in 2 surveyed areas, and the intestines of each mouse were opened with scissors, and then intestinal contents were examined with microscope. Total 6 species of intestinal helminth were detected in 61 (73.5%) out of 83 mice examined. Four species of nematode, i.e., Nippostrongylus brasiliensis, Aspiculuris tetraptera, Heterakis spp. and ascarid, were found in 40 (48.2%), 14 (16.9%), 11 (13.3%) and 13 (15.7%) mice respectively. One species of cestode, Hymenolepis diminuta and 1 unidentified egg were also detected in the intestines of 14 (16.9%) and 1 (1.2%) mice, respectively. Conclusively, this study identified 5 helminth species in the gastrointestinal tracts of wild rodents captured in some areas in central and northern Korea, and N. brasiliensis was the most prevalent (dominant) species rather than zoonotic ones.


Assuntos
Animais Selvagens/parasitologia , Helmintos/isolamento & purificação , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/parasitologia , Murinae/parasitologia , Nematoides/isolamento & purificação , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/parasitologia , Animais , Cestoides/isolamento & purificação , Intestinos/parasitologia , Camundongos , República da Coreia/epidemiologia
5.
Korean J Parasitol ; 55(6): 613-622, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29320816

RESUMO

IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30-60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.


Assuntos
Interleucina-12/metabolismo , Interleucina-23/metabolismo , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/fisiologia , Toxoplasma/imunologia , Células Cultivadas , Humanos , Células Jurkat , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/fisiologia , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
6.
Korean J Parasitol ; 55(1): 95-98, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28285514

RESUMO

Fasciola hepatica is a trematode that causes zoonosis, mainly in cattle and sheep, and occasionally in humans. Few recent studies have determined the infection status of this fluke in Korea. In August 2015, we collected 402 samples of freshwater snails at Hoenggye-ri (upper stream) and Suha-ri (lower stream) of Song-cheon (stream) in Daegwalnyeong-myeon, Pyeongchang-gun in Gangwon-do (Province) near many large cattle or sheep farms. F. hepatica infection was determined using PCR on the nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 402 samples, F. hepatica 1TS-2 marker was detected in 6 freshwater snails; thus, the overall prevalence in freshwater snails was 1.5%. The prevalence varied between collection areas, ranging from 0.0% at Hoenggye-ri to 2.9% at Suha-ri. However, F. gigantica ITS-2 was not detected in the 6 F. hepatica-positive samples by PCR. The nucleotide sequences of the 6 F. hepatica ITS-2 PCR-positive samples were 99.4% identical to the F. hepatica ITS-2 sequences in GenBank, whereas they were 98.4% similar to F. gigantica ITS-2 sequences. These results indicated that the prevalence of F. hepatica in snail intermediate hosts was 1.5% in Gangwon-do, Korea; however the prevalence varied between collection areas. These results may help us to understand F. hepatica infection status in natural environments.


Assuntos
Fasciola hepatica/isolamento & purificação , Água Doce , Caramujos/parasitologia , Animais , Sequência de Bases , Bovinos , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fasciola hepatica/genética , Humanos , Coreia (Geográfico)/epidemiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Prevalência , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Korean J Parasitol ; 54(6): 711-717, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28095655

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines, which are important for innate immunity. NLRs, i.e., nucleotide-binding oligomerization domain (NOD)-like receptors, play a crucial role as innate immune sensors and form multiprotein complexes called inflammasomes, which mediate caspase-1-dependent processing of pro-IL-1ß. To elucidate the role of inflammasome components in T. gondii-infected THP-1 macrophages, we examined inflammasome-related gene expression and mechanisms of inflammasome-regulated cytokine IL-1ß secretion. The results revealed a significant upregulation of IL-1ß after T. gondii infection. T. gondii infection also upregulated the expression of inflammasome sensors, including NLRP1, NLRP3, NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and NAIP, in a time-dependent manner. The infection also upregulated inflammasome adaptor protein ASC and caspase-1 mRNA levels. From this study, we newly found that T. gondii infection regulates NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and neuronal apoptosis inhibitor protein (NAIP) gene expressions in THP-1 macrophages and that the role of the inflammasome-related genes may be critical for mediating the innate immune responses to T. gondii infection.


Assuntos
Expressão Gênica , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/parasitologia , Proteínas NLR/metabolismo , Toxoplasma/imunologia , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Inflamassomos/genética , Proteínas NLR/genética , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
8.
Korean J Parasitol ; 53(5): 641-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26537044

RESUMO

Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.


Assuntos
DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fasciola hepatica/genética , Fasciola hepatica/isolamento & purificação , Oenanthe/parasitologia , Animais , Sequência de Bases , Análise por Conglomerados , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , Coreia (Geográfico) , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
9.
Korean J Parasitol ; 53(3): 271-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26174820

RESUMO

The genetic diversity of Schistosoma haematobium remains largely unstudied in comparison to that of Schistosoma mansoni. To characterize the extent of genetic diversity in S. haematobium among its definitive host (humans), we collected S. haematobium eggs from the urine of 73 infected schoolchildren at 5 primary schools in White Nile State, Sudan, and then performed a randomly amplified polymorphic DNA marker ITS2 by PCR-RFLP analysis. Among 73 S. haematobium egg-positive cases, 13 were selected based on the presence of the S. haematobium satellite markers A4 and B2 in their genomic DNA, and used for RFLP analysis. The 13 samples were subjected to an RFLP analysis of the S. haematobium ITS2 region; however, there was no variation in size among the fragments. Compared to the ITS2 sequences obtained for S. haematobium from Kenya, the nucleotide sequences of the ITS2 regions of S. haematobium from 4 areas in Sudan were consistent with those from Kenya (> 99%). In this study, we demonstrate for the first time that most of the S. haematobium population in Sudan consists of a pan-African S. haematobium genotype; however, we also report the discovery of Kenyan strain inflow into White Nile, Sudan.


Assuntos
Variação Genética , Schistosoma haematobium/genética , Schistosoma haematobium/isolamento & purificação , Esquistossomose Urinária/parasitologia , Urina/parasitologia , Adolescente , Animais , Sequência de Bases , Criança , DNA de Helmintos/genética , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Óvulo/classificação , Óvulo/citologia , Contagem de Ovos de Parasitas , Polimorfismo de Fragmento de Restrição , Schistosoma haematobium/fisiologia , Esquistossomose Urinária/diagnóstico , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/urina , Estudantes , Sudão/epidemiologia
10.
Korean J Parasitol ; 53(4): 371-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26323834

RESUMO

Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-α production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-α production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-α production was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-α production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-α production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.


Assuntos
Colo do Útero/parasitologia , Células Epiteliais/enzimologia , Sistema de Sinalização das MAP Quinases , Mucosa/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vaginite por Trichomonas/enzimologia , Trichomonas vaginalis/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Colo do Útero/enzimologia , Colo do Útero/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Feminino , Humanos , Mucosa/metabolismo , Mucosa/parasitologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Vaginite por Trichomonas/genética , Vaginite por Trichomonas/metabolismo , Vaginite por Trichomonas/parasitologia , Fator de Necrose Tumoral alfa/genética
11.
Korean J Parasitol ; 52(1): 111-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24623893

RESUMO

To evaluate the effects of pesticides to parasite eggs, Ascaris suum eggs were incubated with 5 different pesticides (1:1,500-1:2,000 dilutions of 2% emamectin benzoate, 5% spinetoram, 5% indoxacarb, 1% deltamethrin, and 5% flufenoxuron; all v/v) at 20℃ for 6 weeks, and microscopically evaluated the egg survival and development on a weekly basis. The survival rate of A. suum eggs incubated in normal saline (control eggs) was 90±3% at 6 weeks. However, the survival rates of eggs treated with pesticides were 75-85% at this time, thus significantly lower than the control value. Larval development in control eggs commenced at 3 weeks, and 73±3% of eggs had internal larvae at 6 weeks. Larvae were evident in pesticide-treated eggs at 3-4 weeks, and the proportions of eggs carrying larvae at 6 weeks (36±3%-54±3%) were significantly lower than that of the control group. Thus, pesticides tested at levels similar to those used in agricultural practices exhibited low-level ovicidal activity and delayed embryogenesis of A. suum eggs, although some differences were evident among the tested pesticides.


Assuntos
Ascaris suum/efeitos dos fármacos , Praguicidas/farmacologia , Zigoto/efeitos dos fármacos , Animais , Ascaris suum/crescimento & desenvolvimento , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Microscopia , Análise de Sobrevida , Temperatura , Tempo , Zigoto/crescimento & desenvolvimento
12.
Korean J Parasitol ; 52(6): 595-603, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25548410

RESUMO

Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite.


Assuntos
Metaloproteases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trichomonas vaginalis/enzimologia , Western Blotting , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Humanos , Metaloproteases/genética , Proteólise , Análise de Sequência de DNA , Trichomonas vaginalis/genética
13.
Korean J Parasitol ; 52(6): 645-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25548416

RESUMO

Fasciola hepatica is a trematode that causes zoonosis mainly in cattle and sheep and occasionally in humans. Fascioliasis has been reported in Korea; however, determining F. hepatica infection in snails has not been done recently. Thus, using PCR, we evaluated the prevalence of F. hepatica infection in snails at 4 large water-dropwort fields. Among 349 examined snails, F. hepatica-specific internal transcribed space 1 (ITS-1) and/or ITS-2 markers were detected in 12 snails and confirmed using sequence analysis. Morphologically, 213 of 349 collected snails were dextral shelled, which is the same aperture as the lymnaeid snail, the vectorial host for F. hepatica. Among the 12 F. hepatica-infected snails, 6 were known first intermediate hosts in Korea (Lymnaea viridis and L. ollula) and the remaining 6 (Lymnaea sp.) were potentially a new first intermediate host in Korea. It has been shown that the overall prevalence of the snails contaminated with F. hepatica in water-dropwort fields was 3.4%; however, the prevalence varied among the fields. This is the first study to estimate the prevalence of F. hepatica infection using the vectorial capacity of the snails in Korea.


Assuntos
Fasciola hepatica/isolamento & purificação , Reação em Cadeia da Polimerase , Caramujos/parasitologia , Animais , Sequência de Bases , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fasciola hepatica/anatomia & histologia , Fasciola hepatica/genética , Dados de Sequência Molecular , Oenanthe/crescimento & desenvolvimento , República da Coreia , Análise de Sequência de DNA , Caramujos/crescimento & desenvolvimento
14.
Korean J Parasitol ; 51(1): 85-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23467650

RESUMO

IL-23 and IL-12 are structurally similar and critical for the generation of efficient cellular immune responses. Toxoplasma gondii induces a strong cell-mediated immune response. However, little is known about IL-23 secretion profiles in T. gondii-infected immune cells in connection with IL-12. We compared the patterns of IL-23 and IL-12 production by THP-1 human monocytic cells in response to stimulation with live or heat-killed T. gondii tachyzoites, or with equivalent quantities of either T. gondii excretory/secretory proteins (ESP) or soluble tachyzoite antigen (STAg). IL-23 and IL-12 were significantly increased from 6 hr after stimulation with T. gondii antigens, and their secretions were increased with parasite dose-dependent manner. IL-23 concentrations were significantly higher than those of IL-12 at the same multiplicity of infection. IL-23 secretion induced by live parasites was significantly higher than that by heat-killed parasites, ESP, or STAg, whereas IL-12 secretion by live parasite was similar to those of ESP or STAg. However, the lowest levels of both cytokines were at stimulation with heat-killed parasites. These data indicate that IL-23 secretion patterns by stimulation with various kinds of T. gondii antigens at THP-1 monocytic cells are similar to those of IL-12, even though the levels of IL-23 induction were significantly higher than those of IL-12. The detailed kinetics induced by each T. gondii antigen were different from each other.


Assuntos
Antígenos de Protozoários/imunologia , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Monócitos/imunologia , Monócitos/parasitologia , Toxoplasma/imunologia , Linhagem Celular , Humanos , Fatores de Tempo
15.
Antioxidants (Basel) ; 12(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36978839

RESUMO

The formation of advanced glycation end products (AGE) is linked to the pathogenesis of diabetic nephropathy. The aim of this work was to assess the therapeutic potential and underlying mechanism of action of dieckol (DK), isolated from Ecklonia cava, on renal damage induced by methylglyoxal (MGO) in mouse glomerular mesangial cells. The antiglycation properties of DK were evaluated using ELISA. We conducted molecular docking, immunofluorescence analysis, and Western blotting to confirm the mechanism by which DK prevents AGE-related diabetic nephropathy. DK treatment exhibited antiglycation properties through the inhibition of AGE production, inhibition of cross-linking between AGE and collagen, and breaking of its cross-linking. DK pretreatment exhibited protective effects on renal cells by suppressing MGO-induced intracellular reactive oxygen species (ROS) formation, intracellular MGO and AGE accumulation, activation of the apoptosis cascade and apoptosis-related protein expression, activation of receptor for AGE (RAGE) protein expression, and suppression of the glyoxalase system. Furthermore, DK exhibited a stronger binding affinity for RAGE than AGE, which was confirmed as exerting a competitive inhibitory effect on the AGE-RAGE interaction. These results demonstrated that DK is a potential natural AGE inhibitor that can be utilized to prevent and treat AGE-induced diabetic nephropathy.

16.
Food Funct ; 14(18): 8396-8408, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37614189

RESUMO

Diabetes mellitus leads to chronic complications, such as nephropathy. Diabetic complications are closely related to advanced glycation end products (AGEs). Excessive formation and accumulation of AGEs in diabetic renal diseases lead to excessive oxidative stress, resulting in chronic renal failure. The leaves of Hippophae rhamnoides L. (sea buckthorn leaves; SBL) show biological benefits, including antioxidant effects. This study aimed to evaluate the effect of SBL on kidney damage in db/db mice. The SBL extract was orally administered at 100 and 200 mg kg-1 for 12 weeks to db/db mice. Histological changes and the urine albumin/creatinine ratio were relieved, and the accumulation of AGEs in kidney glomeruli decreased following SBL treatment. Moreover, the SBL extract reduced the expression of AGEs, the receptor for AGEs, and NADPH oxidase 4, but upregulated glyoxalase 1 in the diabetic renal tissue. Urinary excretion levels and expression of 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative stress decreased after SBL treatment in the renal tissue. Furthermore, SBL attenuated oxidative stress in diabetic kidneys by reducing AGE accumulation, thereby ameliorating renal damage. Therefore, from these results, we infer that the SBL extract can act as a potential therapeutic agent for diabetic renal complications caused by AGEs.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hippophae , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Camundongos Endogâmicos , Produtos Finais de Glicação Avançada , Extratos Vegetais
17.
Front Pharmacol ; 14: 1176073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351505

RESUMO

The purpose of this study was to illuminate the mechanism by which Schizonepeta tenuifolia Briq. (ST) ethanolic extract prevents skin photoaging in HR-1 hairless mice (HR-1). The ST ethanolic extract alleviated wrinkle formation, epidermal skin thickness, and collagen degradation in skin tissues of ultraviolet B (UVB)-irradiated HR-1 mice. Expression of matrix metalloproteinases (a wrinkle-related marker) was reduced, and tissue inhibitor of metalloproteinase 1 expression was upregulated following application of ST ethanolic extract. Furthermore, skin dehydration and levels of hyaluronidase-1 and -2 (enzymes that break hyaluronic acid) were decreased. Moreover, protein expression of hyaluronan synthases (markers of skin hydration) and hyaluronic acid levels increased following ST ethanolic extract treatment in UVB-induced photoaging HR-1 mice. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs), including p38, extracellular signal-regulated kinase, and Jun N-terminal kinase was suppressed, and expression of nuclear factor-kappa was reduced. Treatment with ST ethanolic extract also reduced advanced glycation end product (AGE) accumulation and expression of the receptor for AGE (RAGE) in skin tissue. These results suggest that ST ethanolic extract moderates skin damage caused by UVB irradiation via regulating the expression of wrinkle- and hydration-related proteins, MAPKs, and RAGE.

18.
Korean J Parasitol ; 50(3): 243-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22949754

RESUMO

Ascaris suum eggs are inactivated by composting conditions; however, it is difficult to find functional changes in heat-treated A. suum eggs. Here, unembryonated A. suum eggs were incubated at 20°C, 50°C, and 70°C in vitro, and the gene expression levels related to viability, such as eukaryotic translation initiation factor 4E (IF4E), phosphofructokinase 1 (PFK1), and thioredoxin 1 (TRX1), and to apoptosis, such as apoptosis-inducing factor 1 (AIF1) and cell death protein 6 (CDP6), were evaluated by real-time quantitative RT-PCR. No prominent morphological alterations were noted in the eggs at 20°C until day 10. In contrast, the eggs developed rapidly, and embryonated eggs and hatched larvae began to die, starting on day 2 at 50°C and day 1 at 70°C. At 20°C, IF4E, PFK1, and TRX1 mRNA expression was significantly increased from days 2-4; however, AIF1 and CDP6 mRNA expression was not changed significantly. IF4E, PFK1, and TRX1 mRNA expression was markedly decreased from day 2 at 50° and 70°C, whereas AIF1 and CDP6 mRNA expression was significantly increased. The expressions of HSP70 and HSP90 were detected for 9-10 days at 20°C, for 3-5 days at 50°C, and for 2 days at 70°C. Taken together, incremental heat increases were associated with the rapid development of A. suum eggs, decreased expression of genes related to viability, and earlier expression of apoptosis-related genes, and finally these changes of viability- and apoptosis-related genes of A. suum eggs were associated with survival of the eggs under temperature stress.


Assuntos
Apoptose , Ascaris suum/genética , Ascaris suum/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Animais , Sobrevivência Celular/efeitos da radiação , Ovos/efeitos da radiação , Feminino , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sobrevida , Temperatura
19.
Korean J Parasitol ; 50(1): 7-13, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22451728

RESUMO

Toxoplasma gondii can modulate host cell gene expression; however, determining gene expression levels in intermediate hosts after T. gondii infection is not known much. We selected 5 genes (ALDH1A2, BEX2, CCL3, EGR2 and PLAU) and compared the mRNA expression levels in the spleen, liver, lung and small intestine of genetically different mice infected with T. gondii. ALDH1A2 mRNA expressions of both mouse strains were markedly increased at day 1-4 postinfection (PI) and then decreased, and its expressions in the spleen and lung were significantly higher in C57BL/6 mice than those of BALB/c mice. BEX2 and CCR3 mRNA expressions of both mouse strains were significantly increased from day 7 PI and peaked at day 15-30 PI (P<0.05), especially high in the spleen liver or small intestine of C57BL/6 mice. EGR2 and PLAU mRNA expressions of both mouse strains were significantly increased after infection, especially high in the spleen and liver. However, their expression patterns were varied depending on the tissue and mouse strain. Taken together, T. gondii-susceptible C57BL/6 mice expressed higher levels of these 5 genes than did T. gondii-resistant BALB/c mice, particularly in the spleen and liver. And ALDH1A2 and PLAU expressions were increased acutely, whereas BEX2, CCL3 and EGR2 expressions were increased lately. Thus, these demonstrate that host genetic factors exert a strong impact on the expression of these 5 genes and their expression patterns were varied depending on the gene or tissue.


Assuntos
Aldeído Desidrogenase/genética , Quimiocina CCL3/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteínas do Tecido Nervoso/genética , Toxoplasma/fisiologia , Toxoplasmose/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Encéfalo/metabolismo , Encéfalo/parasitologia , Quimiocina CCL3/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Perfilação da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Retinal Desidrogenase , Baço/metabolismo , Baço/virologia , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
20.
PLoS One ; 17(7): e0270249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35788200

RESUMO

Atherosclerosis is a chronic inflammatory disease that contributes to disease progression is associated with the expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Glycolaldehyde (GA) has been shown to impair cellular function in various disorders, including diabetes, and renal diseases. This study investigated the effect of GA on the expression of adhesion molecules in the mouse VSMC line, MOVAS-1. Co-incubation of VSMCs with GA (25-50 µM) dose-dependently increased the protein and mRNA level of Vcam-1 and ICAM-1. Additionally, GA upregulated intracellular ROS production and phosphorylation of MAPK and NK-κB. GA also elevated TNF-α-induced PI3K-AKT activation. Furthermore, GA enhanced TNF-α-activated IκBα kinase activation, subsequent IκBα degradation, and nuclear translocation of NF-κB. These findings suggest that GA stumulated VSMC adhesive capacity and the induction of VCAM-1 and ICAM-1 in VSMCs through inhibition of MAPK and NF-κB signaling pathways, providing insights into the effect of GA to induce inflammation within atherosclerotic lesions.


Assuntos
Músculo Liso Vascular , Fator de Necrose Tumoral alfa , Acetaldeído/análogos & derivados , Animais , Moléculas de Adesão Celular/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA