RESUMO
At sites of inflammation, certain regulatory T cells (Treg cells) can undergo rapid reprogramming into helper-like cells without loss of the transcription factor Foxp3. We show that reprogramming is controlled by downregulation of the transcription factor Eos (Ikzf4), an obligate corepressor for Foxp3. Reprogramming was restricted to a specific subset of "Eos-labile" Treg cells that was present in the thymus and identifiable by characteristic surface markers and DNA methylation. Mice made deficient in this subset became impaired in their ability to provide help for presentation of new antigens to naive T cells. Downregulation of Eos required the proinflammatory cytokine interleukin-6 (IL-6), and mice lacking IL-6 had impaired development and function of the Eos-labile subset. Conversely, the immunoregulatory enzyme IDO blocked loss of Eos and prevented the Eos-labile Treg cells from reprogramming. Thus, the Foxp3(+) lineage contains a committed subset of Treg cells capable of rapid conversion into biologically important helper cells.
Assuntos
Proteínas de Transporte/metabolismo , Fator de Transcrição Ikaros/metabolismo , Interleucina-6/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/genética , Ativação Linfocitária/imunologia , Camundongos , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , TimoRESUMO
LTR retrotransposons are repetitive DNA elements comprising â¼10% of the human genome. However, LTR sequences are disproportionately present in human long, non-coding RNAs (lncRNAs). Whether and how the LTR lncRNAs serve biological functions are largely unknown. Here we show that in primary human erythroblasts, lncRNAs transcribed from the LTR retrotransposons of ERV-9 human endogenous retrovirus activated transcription of key erythroid genes and modulated ex vivo erythropoiesis. To dissect the functional mechanism of ERV-9 lncRNAs, we performed genome-wide RNA and ChIRP analyses before and after global knockdown or locus-specific deletion of ERV-9 lncRNAs in human erythroblasts carrying â¼4000 copies of the ERV-9 LTRs and in transgenic mouse erythroblasts carrying a single copy of the primate-specific ERV-9 LTR in the 100 kb human ß-globin gene locus. We found that ERV-9 lncRNAs acted in cis to stabilize assembly of the ERV-9 LTR enhancer complex and facilitate long-range LTR enhancer function in activating transcription of downstream, cis-linked globin genes. Our findings suggested that LTR lncRNAs transcribed from many of the 4000 copies of ERV-9 LTR retrotransposons acted by a similar cis mechanism to modulate LTR enhancer function in activating transcription of downstream genes critical to cellular processes including erythropoiesis.
Assuntos
Elementos Facilitadores Genéticos , Eritroblastos/metabolismo , RNA Longo não Codificante/genética , Retroelementos , Sequências Repetidas Terminais , Globinas beta/genética , Animais , Sequência de Bases , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Eritroblastos/citologia , Eritropoese , Loci Gênicos , Genoma , Humanos , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Globinas beta/metabolismoRESUMO
Motivation: Chromatin accessibility plays a key role in epigenetic regulation of gene activation and silencing. Open chromatin regions allow regulatory elements such as transcription factors and polymerases to bind for gene expression while closed chromatin regions prevent the activity of transcriptional machinery. Recently, Methyltransferase Accessibility Protocol for individual templates-Bisulfite Genome Sequencing (MAPit-BGS) and nucleosome occupancy and methylome sequencing (NOMe-seq) have been developed for simultaneously profiling chromatin accessibility and DNA methylation on single molecules. Therefore, there is a great demand in developing computational methods to identify chromatin accessibility from MAPit-BGS and NOMe-seq. Results: In this article, we present CAME (Chromatin Accessibility and Methylation), a seed-extension based approach that identifies chromatin accessibility from NOMe-seq. The efficiency and effectiveness of CAME were demonstrated through comparisons with other existing techniques on both simulated and real data, and the results show that our method not only can precisely identify chromatin accessibility but also outperforms other methods. Availability and Implementation: CAME is implemented in java and the program is freely available online at http://sourceforge.net/projects/came/. Contacts: jechoi@gru.edu or khryu@dblab.chungbuk.ac.kr. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Metilação de DNA/genética , Nucleossomos/metabolismo , Análise de Sequência de DNA/métodos , Software , Algoritmos , Sequência de Bases , Neoplasias do Colo/genética , Simulação por Computador , Ilhas de CpG/genética , Bases de Dados Genéticas , Epigênese Genética , Células HCT116 , Humanos , Conformação de Ácido Nucleico , Curva ROC , Padrões de ReferênciaRESUMO
Hydroxyurea (HU), the first of two drugs approved by the US Food and Drug Administration for treating patients with sickle cell disease (SCD), produces anti-sickling effect by re-activating fetal γ-globin gene to enhance production of fetal hemoglobin. However, approximately 30% of the patients do not respond to HU therapy. The molecular basis of non-responsiveness to HU is not clearly understood. To address this question, we examined HU-induced changes in the RNA and protein levels of transcription factors NF-Y, GATA-1, -2, BCL11A, TR4, MYB and NF-E4 that assemble the γ-globin promoter complex and regulate transcription of γ-globin gene. In erythroblasts cultured from peripheral blood CD34+ cells of patients with SCD, we found that HU-induced changes in the protein but not the RNA levels of activator GATA-2 and repressors GATA-1, BCL11A and TR4 correlated with HU-induced changes in fetal hemoglobin (HbF) levels in the peripheral blood of HU high and low responders. However, HU did not significantly induce changes in the protein or RNA levels of activators NF-Y and NF-E4. Based on HU-induced changes in the protein levels of GATA-2, -1 and BCL11A, we calculated an Index of Hydroxyurea Responsiveness (IndexHU-3). Compared to the HU-induced fold changes in the individual transcription factor protein levels, the numerical values of IndexHU-3 statistically correlated best with the HU-induced peripheral blood HbF levels of the patients. Thus, IndexHU-3 can serve as an appropriate indicator for inherent HU responsiveness of patients with SCD.
Assuntos
Anemia Falciforme/tratamento farmacológico , Eritroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxiureia/farmacologia , gama-Globinas/genética , Anemia Falciforme/sangue , Células Cultivadas , Hemoglobina Fetal/análise , Hemoglobina Fetal/efeitos dos fármacos , Humanos , Hidroxiureia/uso terapêutico , RNA Mensageiro/sangue , RNA Mensageiro/efeitos dos fármacos , Fatores de Transcrição/sangue , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genéticaRESUMO
The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide chromatin immunoprecipitation sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. The H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and it is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2, and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 levels in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than decitabine and vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-fluorouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL(+) and that FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression.
Assuntos
Neoplasias do Colo/etiologia , Resistencia a Medicamentos Antineoplásicos/genética , Inativação Gênica , Histonas/metabolismo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Receptor fas/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Metilação de DNA , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Fluoruracila/farmacologia , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Indóis/farmacologia , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metilação/efeitos dos fármacos , Metiltransferases/metabolismo , Camundongos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Nasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative analyses showcasing the usefulness of the revised annotated gene set. RESULTS: The revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97 % of the genes compared to 28 % of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98 % in this latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712 alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola. Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than those of other sequenced hymenopteran species, owing both to improvements in the genome annotation and to unique genes in the wasp lineage. We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution and higher probabilities of duplication than genes having alternative transcripts. CONCLUSIONS: Genome-wide expression data greatly improves the annotation of the N. vitripennis genome, by increasing the gene count, reducing the number of missing genes and providing more comprehensive data on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to Nasonia's biology, as well as numerous novel genes. OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/ , www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas . The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/ .
Assuntos
Biologia Computacional/métodos , Genoma de Inseto , Genômica , Vespas/genética , Processamento Alternativo , Animais , Mapeamento de Sequências Contíguas , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Genes de Insetos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Anotação de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , RNA não Traduzido , Software , NavegadorRESUMO
MOTIVATION: Tag density plots are very important to intuitively reveal biological phenomena from capture-based sequencing data by visualizing the normalized read depth in a region. RESULTS: We have developed iTagPlot to compute tag density across functional features in parallel using multicores and a grid engine and to interactively explore it in a graphical user interface. It allows us to stratify features by defining groups based on biological function and measurement, summary statistics and unsupervised clustering. AVAILABILITY AND IMPLEMENTATION: http://sourceforge.net/projects/itagplot/.
Assuntos
Sitios de Sequências Rotuladas , Software , Linhagem Celular , Análise por Conglomerados , Gráficos por Computador , Ilhas de CpG , Metilação de DNA , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , HumanosRESUMO
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5' regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5' and 3' UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression.
Assuntos
Sequência Conservada , Metilação de DNA/genética , Evolução Molecular , Himenópteros/genética , Processamento Alternativo/genética , Animais , Ilhas de CpG/genética , Éxons , Genoma , Íntrons , Filogenia , Splicing de RNARESUMO
BACKGROUND: Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. METHODS: We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. RESULTS: Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. DISCUSSION: The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. CONCLUSIONS: The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.
Assuntos
Relógios Circadianos/genética , Culicidae/genética , Evolução Molecular , Transcriptoma/genética , Animais , Variação Genética , Anotação de Sequência Molecular , Fotoperíodo , Filogenia , Estações do Ano , Alinhamento de SequênciaRESUMO
Agrobacterium tumefaciens is a facultative plant pathogen and the causative agent of crown gall disease. The initial stage of infection involves attachment to plant tissues, and subsequently, biofilms may form at these sites. This study focuses on the periplasmic ExoR regulator, which was identified based on the severe biofilm deficiency of A. tumefaciens exoR mutants. Genome-wide expression analysis was performed to elucidate the complete ExoR regulon. Overproduction of the exopolysaccharide succinoglycan is a dramatic phenotype of exoR mutants. Comparative expression analyses revealed that the core ExoR regulon is unaffected by succinoglycan synthesis. Several findings are consistent with previous observations: genes involved in succinoglycan biosynthesis, motility, and type VI secretion are differentially expressed in the ΔexoR mutant. In addition, these studies revealed new functional categories regulated by ExoR, including genes related to virulence, conjugation of the pAtC58 megaplasmid, ABC transporters, and cell envelope architecture. To address how ExoR exerts a broad impact on gene expression from its periplasmic location, a genetic screen was performed to isolate suppressor mutants that mitigate the exoR motility phenotype and identify downstream components of the ExoR regulatory pathway. This suppression analysis identified the acid-sensing two-component system ChvG-ChvI, and the suppressor mutant phenotypes suggest that all or most of the characteristic exoR properties are mediated through ChvG-ChvI. Subsequent analysis indicates that exoR mutants are simulating a response to acidic conditions, even in neutral media. This work expands the model for ExoR regulation in A. tumefaciens and underscores the global role that this regulator plays on gene expression.
Assuntos
Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Transferência Genética Horizontal/fisiologia , Polissacarídeos Bacterianos/biossíntese , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Mutação , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Virulência/genéticaRESUMO
BACKGROUND: Although Daphnia is increasingly recognized as a model for ecological genomics and biomedical research, there is, as of yet, no high-resolution genetic map for the genus. Such a map would provide an important tool for mapping phenotypes and assembling the genome. Here we estimate the genome size of Daphnia magna and describe the construction of an SNP array based linkage map. We then test the suitability of the map for life history and behavioural trait mapping. The two parent genotypes used to produce the map derived from D. magna populations with and without fish predation, respectively and are therefore expected to show divergent behaviour and life-histories. RESULTS: Using flow cytometry we estimated the genome size of D. magna to be about 238 mb. We developed an SNP array tailored to type SNPs in a D. magna F2 panel and used it to construct a D. magna linkage map, which included 1,324 informative markers. The map produced ten linkage groups ranging from 108.9 to 203.6 cM, with an average distance between markers of 1.13 cM and a total map length of 1,483.6 cM (Kosambi corrected). The physical length per cM is estimated to be 160 kb. Mapping infertility genes, life history traits and behavioural traits on this map revealed several significant QTL peaks and showed a complex pattern of underlying genetics, with different traits showing strongly different genetic architectures. CONCLUSIONS: The new linkage map of D. magna constructed here allowed us to characterize genetic differences among parent genotypes from populations with ecological differences. The QTL effect plots are partially consistent with our expectation of local adaptation under contrasting predation regimes. Furthermore, the new genetic map will be an important tool for the Daphnia research community and will contribute to the physical map of the D. magna genome project and the further mapping of phenotypic traits. The clones used to produce the linkage map are maintained in a stock collection and can be used for mapping QTLs of traits that show variance among the F2 clones.
Assuntos
Mapeamento Cromossômico , Daphnia/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Análise por Conglomerados , Feminino , Frequência do Gene , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genoma , Tamanho do Genoma , Genótipo , Escore Lod , MasculinoRESUMO
Many bacteria colonize surfaces and transition to a sessile mode of growth. The plant pathogen Agrobacterium tumefaciens produces a unipolar polysaccharide (UPP) adhesin at single cell poles that contact surfaces. Here we report that elevated levels of the intracellular signal cyclic diguanosine monophosphate (c-di-GMP) lead to surface-contact-independent UPP production and a red colony phenotype due to production of UPP and the exopolysaccharide cellulose, when A. tumefaciens is incubated with the polysaccharide stain Congo Red. Transposon mutations with elevated Congo Red staining identified presumptive UPP-negative regulators, mutants for which were hyperadherent, producing UPP irrespective of surface contact. Multiple independent mutations were obtained in visN and visR, activators of flagellar motility in A. tumefaciens, now found to inhibit UPP and cellulose production. Expression analysis in a visR mutant and isolation of suppressor mutations, identified three diguanylate cyclases inhibited by VisR. Null mutations for two of these genes decrease attachment and UPP production, but do not alter cellular c-di-GMP levels. However, analysis of catalytic site mutants revealed their GGDEF motifs are required to increase UPP production and surface attachment. Mutations in a specific presumptive c-di-GMP phosphodiesterase also elevate UPP production and attachment, consistent with c-di-GMP activation of surface-dependent adhesin deployment.
Assuntos
Agrobacterium tumefaciens/fisiologia , Aderência Bacteriana , Locomoção , Polissacarídeos Bacterianos/biossíntese , Adesinas Bacterianas/biossíntese , Agrobacterium tumefaciens/metabolismo , Vermelho Congo/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Elementos de DNA Transponíveis , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Mutagênese Insercional , Coloração e RotulagemRESUMO
Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are "off" and survival/growth pathways "on." Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common "cell line" gene expression pattern.
Assuntos
Drosophila melanogaster/genética , Variação Genética , Transcrição Gênica , Animais , Linhagem Celular , Análise por Conglomerados , Éxons , Feminino , Perfilação da Expressão Gênica , Masculino , Dados de Sequência Molecular , Transdução de Sinais/genética , Fatores de Transcrição/genéticaRESUMO
Males and females can be highly dimorphic in metabolism and physiology despite sharing nearly identical genomes, and both sexes respond phenotypically to elevated testosterone, a steroid hormone that alters gene expression. Only recently has it become possible to learn how a hormone such as testosterone affects global gene expression in non-model systems, and whether it affects the same genes in males and females. To investigate the transcriptional mechanisms by which testosterone exerts its metabolic and physiological effects on the periphery, we compared gene expression by sex and in response to experimentally elevated testosterone in a well-studied bird species, the dark-eyed junco (Junco hyemalis). We identified 291 genes in the liver and 658 in the pectoralis muscle that were differentially expressed between males and females. In addition, we identified 1727 genes that were differentially expressed between testosterone-treated and control individuals in at least one tissue and sex. Testosterone treatment altered the expression of only 128 genes in both males and females in the same tissue, and 847 genes were affected significantly differently by testosterone treatment in the two sexes. These substantial differences in transcriptional response to testosterone suggest that males and females may employ different pathways when responding to elevated testosterone, despite the fact that many phenotypic effects of experimentally elevated testosterone are similar in both sexes. In contrast, of the 121 genes that were affected by testosterone treatment in both sexes, 78% were regulated in the same direction (e.g. either higher or lower in testosterone-treated than control individuals) in both males and females. Thus, it appears that testosterone acts through both unique and shared transcriptional pathways in males and females, suggesting multiple mechanisms by which sexual conflict can be mediated.
Assuntos
Conflito Psicológico , Expressão Gênica , Comportamento Sexual Animal , Aves Canoras/genética , Testosterona/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Músculos Peitorais/metabolismo , Caracteres Sexuais , Aves Canoras/fisiologia , Testosterona/sangue , Testosterona/genéticaRESUMO
BACKGROUND: Cellular differentiation is characterized by the acquisition of specialized structures and functions, cell cycle exit, and global attenuation of the DNA damage response. It is largely unknown how these diverse cellular events are coordinated at the molecular level during differentiation. We addressed this question in a model system of neuroblastoma cell differentiation induced by HOXC9. RESULTS: We conducted a genome-wide analysis of the HOXC9-induced neuronal differentiation program. Microarray gene expression profiling revealed that HOXC9-induced differentiation was associated with transcriptional regulation of 2,370 genes, characterized by global upregulation of neuronal genes and downregulation of cell cycle and DNA repair genes. Remarkably, genome-wide mapping by ChIP-seq demonstrated that HOXC9 bound to 40% of these genes, including a large number of genes involved in neuronal differentiation, cell cycle progression and the DNA damage response. Moreover, we showed that HOXC9 interacted with the transcriptional repressor E2F6 and recruited it to the promoters of cell cycle genes for repressing their expression. CONCLUSIONS: Our results demonstrate that HOXC9 coordinates diverse cellular processes associated with differentiation by directly activating and repressing the transcription of distinct sets of genes.
Assuntos
Diferenciação Celular , Inativação Gênica , Proteínas de Homeodomínio/fisiologia , Neurônios/fisiologia , Ativação Transcricional , Sítios de Ligação , Ciclo Celular/genética , Linhagem Celular Tumoral , Reparo do DNA/genética , Fator de Transcrição E2F6/metabolismo , Genoma Humano , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA , Transcrição Gênica , TranscriptomaRESUMO
MOTIVATION: Gene clusters are arrangements of functionally related genes on a chromosome. In bacteria, it is expected that evolutionary pressures would conserve these arrangements due to the functional advantages they provide. Visualization of conserved gene clusters across multiple genomes provides key insights into their evolutionary histories. Therefore, a software tool that enables visualization and functional analyses of gene clusters would be a great asset to the biological research community. RESULTS: We have developed GeneclusterViz, a Java-based tool that allows for the visualization, exploration and downstream analyses of conserved gene clusters across multiple genomes. GeneclusterViz combines an easy-to-use exploration interface for gene clusters with a host of other analysis features such as multiple sequence alignments, phylogenetic analyses and integration with the KEGG pathway database. AVAILABILITY: http://biohealth.snu.ac.kr/GeneclusterViz/; http://microbial.informatics.indiana.edu/GeneclusterViz/
Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Família Multigênica , Filogenia , Software , Análise por Conglomerados , Escherichia coli/genética , Genoma , Alinhamento de SequênciaRESUMO
We applied a solution hybrid selection approach to the enrichment of CpG islands (CGIs) and promoter sequences from the human genome for targeted high-throughput bisulfite sequencing. A single lane of Illumina sequences allowed accurate and quantitative analysis of ~1 million CpGs in more than 21,408 CGIs and more than 15,946 transcriptional regulatory regions. Of the CpGs analyzed, 77-84% fell on or near capture probe sequences; 69-75% fell within CGIs. More than 85% of capture probes successfully yielded quantitative DNA methylation information of targeted regions. Differentially methylated regions (DMRs) were identified in the 5'-end regulatory regions, as well as the intra- and intergenic regions, particularly in the X-chromosome among the three breast cancer cell lines analyzed. We chose 46 candidate loci (762 CpGs) for confirmation with PCR-based bisulfite sequencing and demonstrated excellent correlation between two data sets. Targeted bisulfite sequencing of three DNA methyltransferase (DNMT) knockout cell lines and the wild-type HCT116 colon cancer cell line revealed a significant decrease in CpG methylation for the DNMT1 knockout and DNMT1, 3B double knockout cell lines, but not in DNMT3B knockout cell line. We demonstrated the targeted bisulfite sequencing approach to be a powerful method to uncover novel aberrant methylation in the cancer epigenome. Since all targets were captured and sequenced as a pool through a series of single-tube reactions, this method can be easily scaled up to deal with a large number of samples.
Assuntos
Ilhas de CpG , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização de Ácido Nucleico/métodos , Análise de Sequência de DNA/métodos , Sulfitos , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , Técnicas de Inativação de Genes , Humanos , Regiões Promotoras GenéticasRESUMO
BACKGROUND: With the advent of next-generation sequencing (NGS) technologies, full cDNA shotgun sequencing has become a major approach in the study of transcriptomes, and several different protocols in 454 sequencing have been invented. As each protocol uses its own short DNA tags or adapters attached to the ends of cDNA fragments for labeling or sequencing, different contaminants may lead to mis-assembly and inaccurate sequence products. RESULTS: We have designed and implemented a new program for raw sequence cleaning in a graphical user interface and a batch script. The cleaning process consists of several modules including barcode trimming, sequencing adapter trimming, amplification primer trimming, poly-A tail trimming, vector screening and low quality region trimming. These modules can be combined based on various sequencing applications. CONCLUSIONS: ESTclean is a software package not only for cleaning cDNA sequences, but also for helping to develop sequencing protocols by providing summary tables and figures for sequencing quality control in a graphical user interface. It outperforms in cleaning read sequences from complicated sequencing protocols which use barcodes and multiple amplification primers.
Assuntos
Etiquetas de Sequências Expressas , Análise de Sequência de DNA/métodos , Software , Transcriptoma , Animais , Primers do DNA/genética , DNA Complementar/genética , Drosophila melanogaster/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior. RESULTS: From a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified. CONCLUSIONS: The extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful information for ecological model systems that have historically lacked genomic tools. The junco-specific microarray developed here is allowing investigations of gene expression responses to environmental and hormonal manipulations - extending the historic work on natural history and hormone-mediated phenotypes in this system.
Assuntos
Genoma , Aves Canoras/genética , Transcriptoma , Animais , Ecossistema , Feminino , Genômica , Masculino , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , RNA/genética , RNA/metabolismo , Análise de Sequência de RNARESUMO
BACKGROUND: The shuttles hoppfish (mudskipper), Periophthalmus modestus, is one of the mudskippers, which are the largest group of amphibious teleost fishes, which are uniquely adapted to live on mudflats. Because mudskippers can survive on land for extended periods by breathing through their skin and through the lining of the mouth and throat, they were evaluated as a model for the evolutionary sea-land transition of Devonian protoamphibians, ancestors of all present tetrapods. RESULTS: A total of 39.6, 80.2, 52.9, and 33.3 Gb of Illumina, Pacific Biosciences, 10X linked, and Hi-C data, respectively, was assembled into 1,419 scaffolds with an N50 length of 33 Mb and BUSCO score of 96.6%. The assembly covered 117% of the estimated genome size (729 Mb) and included 23 pseudo-chromosomes anchored by a Hi-C contact map, which corresponded to the top 23 longest scaffolds above 20 Mb and close to the estimated one. Of the genome, 43.8% were various repetitive elements such as DNAs, tandem repeats, long interspersed nuclear elements, and simple repeats. Ab initio and homology-based gene prediction identified 30,505 genes, of which 94% had homology to the 14 Actinopterygii transcriptomes and 89% and 85% to Pfam familes and InterPro domains, respectively. Comparative genomics with 15 Actinopterygii species identified 59,448 gene families of which 12% were only in P. modestus. CONCLUSIONS: We present the high quality of the first genome assembly and gene annotation of the shuttles hoppfish. It will provide a valuable resource for further studies on sea-land transition, bimodal respiration, nitrogen excretion, osmoregulation, thermoregulation, vision, and mechanoreception.