Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
PLoS Biol ; 21(6): e3002156, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315086

RESUMO

Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Masculino , Apoptose/fisiologia , Proteína X Associada a bcl-2 , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo
2.
Proteins ; 92(1): 44-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37553948

RESUMO

The activation or inactivation of B-cell lymphoma-2 (Bcl-2) antagonist/killer (Bak) is critical for controlling mitochondrial outer membrane permeabilization-dependent apoptosis. Its pro-apoptotic activity is controlled by intermolecular interactions with the Bcl-2 homology 3 (BH3) domain, which is accommodated in the hydrophobic pocket of Bak. Bcl-2-interacting protein 5 (Bnip5) is a noncanonical BH3 domain-containing protein that interacts with Bak. Bnip5 is characterized by its controversial effects on the regulation of the pro-apoptotic activity of Bak. In the present study, we determined the crystal structure of Bak bound to Bnip5 BH3. The intermolecular association appeared to be typical at first glance, but we found that it is maintained by tight hydrophobic interactions together with hydrogen/ionic bonds, which accounts for their high binding affinity with a dissociation constant of 775 nM. Structural analysis of the complex showed that Bnip5 interacts with Bak in a manner similar to that of the Bak-activating pro-apoptotic factor peroxisomal testis-enriched protein 1, particularly in the destabilization of the intramolecular electrostatic network of Bak. Our structure is considered to reflect the initial point of drastic and consecutive conformational and stoichiometric changes in Bak induced by Bnip5 BH3, which helps in explaining the effects of Bnip5 in regulating Bak-mediated apoptosis.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Domínios Proteicos , Proteína bcl-X/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Apoptose/fisiologia
3.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005366

RESUMO

Poly(amidoamine) (PAMAM) dendrimers have attracted considerable attention in the field of gene therapy due to their flexibility in introducing different functional moieties and reduced toxicity at low generations. However, their transfection efficiency remains a limitation. Therefore, an essential approach for improving their transfection efficiency as gene carriers involves modifying the structure of PAMAM by conjugating functional groups around their surface. In this study, we successfully conjugated an RRHRH oligopeptide to the surface of PAMAM generation 2 (PAMAM G2) to create RRHRH-PAMAM G2. This construction aims to condense plasmid DNA (pDNA) and facilitate its penetration into cell membranes, leading to its promising potential for gene therapy. RRHRH-PAMAM G2/pDNA complexes were smaller than 100 nm and positively charged. Nano-polyplexes can enter the cell and show a high transfection efficiency after 24 h of transfection. The RRHRH-PAMAM G2 was non-toxic to HeLa, NIH3T3, A549, and MDA-MB-231 cell lines. These results strongly suggest that RRHRH-PAMAM G2 holds promise as a gene carrier for gene therapy owing to its biocompatibility and ability to deliver genes to the cell.


Assuntos
Dendrímeros , Camundongos , Animais , Humanos , Dendrímeros/química , Células NIH 3T3 , DNA/química , Plasmídeos/genética , Transfecção , Oligopeptídeos/química
4.
Biochem Biophys Res Commun ; 625: 174-180, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964379

RESUMO

Antiapoptotic B-cell lymphoma-2 (Bcl-2) proteins suppress apoptosis by interacting with proapoptotic regulators. They commonly contain a hydrophobic groove where the Bcl-2 homology 3 (BH3) domain of Bcl-2 family members or BH3 domain-containing non-Bcl-2 family proteins can be accommodated. Peroxisomal testis-specific 1 (Pxt1) was previously identified as a male germ cell-specific protein whose overexpression causes germ cell apoptosis and infertility in male mice. Sequence and biochemical analyses also showed that human Pxt1, which is composed of 134 amino acids and is longer than mouse Pxt1 consisting of only 51 amino acids, has a BH3 domain that interacts with antiapoptotic Bcl-2 proteins, including Bcl-2 and Bcl-xL. In this study, we determined the crystal structure of Bcl-xL bound to the human Pxt1 BH3 domain. The five BH3 consensus residues are well conserved in the human Pxt1 BH3 domain and make a critical contribution to the complex formation in a canonical manner. Structural and biochemical analyses also demonstrated that Bcl-xL interacts with the BH3 domain of human Pxt1 but not with that of mouse Pxt1, and that residues 76-83 of human Pxt1, absent in mouse Pxt1, play a pivotal role in the intermolecular binding to Bcl-xL. While Bcl-xL consistently colocalized with human Pxt1 in mitochondria, it did not do so with mouse Pxt1, when expressed in HeLa cells. Collectively, these data verified that human and mouse Pxt1 differ in their binding ability to the antiapoptotic regulator Bcl-xL, which might affect their functionality in controlling apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose , Testículo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Testículo/metabolismo , Proteína bcl-X/metabolismo
5.
Langmuir ; 38(4): 1550-1559, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057617

RESUMO

The enhancement of surface wettability by hydrophilic polymer coatings has been of great interest because it has been used to address several technical challenges such as biofouling and surface fogging. Among the hydrophilic polymers, zwitterionic polymers have been extensively utilized to coat solid surfaces due to their excellent capability to bind water molecules, thereby forming dense hydration layers on the solid surfaces. For these zwitterionic polymers to function appropriately on the solid surfaces, techniques for fixing polymers onto the solid surface with high efficiency are required. Herein, we report a new approach to graft zwitterionic polymers onto solid substrates. The approach is based on the mussel-inspired surface chemistry and metal coordination. It consists of polydopamine coating and the coordination-driven grafting of the zwitterionic polymers. Polydopamine coating enables the versatile surface immobilization of catechols. Zwitterionic polymers are then easily fixed onto the catechol-immobilized surface by metal-mediated crosslinking reactions. Using this approach, nanometer-thick zwitterionic polymer layers that are highly resistant to bacterial adhesion and fog generation could be successfully fabricated on solid substrates in a substrate-independent manner.


Assuntos
Incrustação Biológica , Antibacterianos/química , Antibacterianos/farmacologia , Aderência Bacteriana , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Molhabilidade
6.
Korean J Physiol Pharmacol ; 25(5): 467-478, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448464

RESUMO

In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

7.
Langmuir ; 35(45): 14465-14472, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31612722

RESUMO

Catechols are prone to oxidative polymerization as well as complex formation with metal ions. These two features of catechols have played an important role in the construction of functional films on various surfaces. For example, marine antifouling films and antibacterial films were successfully prepared by oxidative polymerization and metal complexation of catechol-containing molecules, respectively. However, the effect of simultaneous metal complexation and oxidative polymerization on functional film formation has not yet been fully investigated. Herein, as a derivative of 3-(3,4-dihydroxyphenyl)-l-alanine (DOPA), we synthesized an ethylene glycol-derivatized DOPA (OEG-DOPA) and formed OEG-DOPA thin films based on (1) oxidative polymerization and (2) the complexation between catechol groups of OEG-DOPA and iron(III) (FeIII) ions. Either or both approaches were used for the film formation. OEG-DOPA film formation was characterized by ellipsometry, contact angle goniometry, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Among the conditions used, the formation of a uniform film was only achieved with the dual cross-linking system of FeIII complexation and oxidation-induced covalent bond formation. Compared to the uncoated substrate and other OEG-DOPA films prepared under different conditions, the uniform OEG-DOPA film strongly inhibited bacterial adhesion, showing excellent antibacterial capability. We think that our surface-coating strategy can be applied to medical devices, tools, and implants where bacterial adhesion and biofilm formation should be prevented. This work can also serve as a basis for the construction of functional thin films for other catechol-functionalized materials.


Assuntos
Antibacterianos/síntese química , Etilenoglicol/química , Compostos Férricos/síntese química , Levodopa/química , Antibacterianos/química , Compostos Férricos/química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
8.
J Nanobiotechnology ; 16(1): 104, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572896

RESUMO

BACKGROUND: Recently, a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) to generate reactive oxygen species (ROS) and heat to kill cancer cells, respectively has attracted considerable attention because it gives synergistic effects on the cancer treatment by utilizing the radiation of nontoxic low-energy photons such as long wavelength visible light and near IR (NIR) penetrating into subcutaneous region. For the effective combination of the phototherapies, various organic photosensitizer-conjugated gold nanocomplexes have been developed, but they have still some disadvantages due to photobleaching and unnecessary energy transfer of the organic photosensitizers. RESULTS: In this study, we fabricated novel inorganic phototherapeutic nanocomplexes (Au NR-TiO2 NCs) by conjugating gold nanorods (Au NRs) with defective TiO2 nanoparticle clusters (d-TiO2 NP clusters) and characterized their optical and photothermal properties. They were observed to absorb a broad range of visible light and near IR (NIR) from 500 to 1000 nm, exhibiting the generation of ROS as well as the photothermal effect for the simultaneous application of PDT and PTT. The resultant combination of PDT and PTT treatments of HeLa cells incubated with the nanocomplexes caused a synergistic increase in the cell death compared to the single treatment. CONCLUSION: The higher efficacy of cell death by the combination of PDT and PTT treatments with the nanocomplexes is likely attributed to the increases of ROS generation from the TiO2 NCs with the aid of local surface plasma resonance (LSPR)-induced hot electrons and heat generation from Au NRs, suggesting that Au NR-TiO2 NCs are promising nanomaterials for the in vivo combinatorial phototherapy of cancer.


Assuntos
Ouro , Nanopartículas Metálicas , Nanotubos/química , Fotoquimioterapia , Titânio , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Células HeLa , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química
9.
Bioconjug Chem ; 28(9): 2266-2276, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28742327

RESUMO

Peptide nanostructure has been widely explored for drug-delivery systems in recent studies. Peptides possess comparatively lower cytotoxicity and are more efficient than polymeric carriers. Here, we propose a peptide nanorod system, composed of an amphiphilic oligo-peptide RH3F8 (Arg-His3-Phe8), as a drug-delivery carrier. Arginine is an essential amino acid in typical cell-penetration peptides, and histidine induces endo- and lysosomal escape because of its proton sponge effect. Phenylalanine is introduced to provide rich hydrophobicity for stable self-assembly and drug encapsulation. The self-assembled structure of RH3F8 showed nanorod-shaped morphology, positive surface charge, and retained formation in water for 35 days. RH3F8, labeled with Nile Red, showed high cellar uptake and accumulation in both cytoplasm and nucleus. The RH3F8 nanorods demonstrated negligible cytotoxicity, as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and hemolysis assays. To confirm the efficiency of drug delivery, curcumin was encapsulated in the RH3F8 nanorod system (RH3F8-Cur). RH3F8-Cur showed high encapsulation efficiency (24.63%) under the conditions of 200 µM curcumin. The RH3F8-Cur retained nanoscale size and positive surface charge, similar to those of the empty RH3F8 nanorods. RH3F8-Cur displayed a robust anticancer effect in HeLa and A549 cells, and inhibited the proliferation of cancer cells in a zebrafish model. These results indicate that the RH3F8 nanorods may be a promising candidate for a safe and effective drug-delivery system.


Assuntos
Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Nanotubos/química , Oligopeptídeos/química , Fenilalanina/análogos & derivados , Tensoativos/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Linhagem Celular Tumoral , Curcumina/farmacologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Nanotubos/ultraestrutura , Neoplasias/tratamento farmacológico , Oligopeptídeos/metabolismo , Oligopeptídeos/toxicidade , Fenilalanina/metabolismo , Fenilalanina/toxicidade , Tensoativos/metabolismo , Tensoativos/toxicidade , Peixe-Zebra
10.
J Nanosci Nanotechnol ; 14(1): 755-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730295

RESUMO

Since the revolutionary discovery that phospholipids can form closed bilayered structures in aqueous systems, liposomes have become a very interesting topic of research. Because of their versatility and amazing biocompatibility, the use of liposomes has been widely accepted in many scientific disciplines. Their applications, especially in medicine, have yielded breakthroughs with anticancer-drug carriers over the past few decades. Specifically, their easy preparation and various structural aspects have given rise to a broadly usable way to internalize biomolecules such as drugs, DNA, RNA and even imaging probes. This review article reports recent developments in liposomal drug delivery and gene delivery, and thoroughly covers the synthesis and different kinds of liposomal surface modification techniques that have resulted in higher stability and efficiency with respect to the use of liposomes in tumor cell targeting, site-specific release, and extending blood retention times.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Lipossomos/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Adsorção , Materiais Biocompatíveis/administração & dosagem , Biopolímeros/administração & dosagem , Cristalização/métodos , Composição de Medicamentos/métodos , Lipossomos/administração & dosagem , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
Adv Healthc Mater ; 13(14): e2303857, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38344923

RESUMO

Recently, mRNA-based therapeutics, including vaccines, have gained significant attention in the field of gene therapy for treating various diseases. Among the various mRNA delivery vehicles, lipid nanoparticles (LNPs) have emerged as promising vehicles for packaging and delivering mRNA with low immunogenicity. However, while mRNA delivery has several advantages, the delivery efficiency and stability of LNPs remain challenging for mRNA therapy. In this study, an ionizable helper cholesterol analog, 3ß[L-histidinamide-carbamoyl] cholesterol (Hchol) lipid is developed and incorporated into LNPs instead of cholesterol to enhance the LNP potency. The pKa values of the Hchol-LNPs are ≈6.03 and 6.61 in MC3- and SM102-based lipid formulations. Notably, the Hchol-LNPs significantly improve the delivery efficiency by enhancing the endosomal escape of mRNA. Additionally, the Hchol-LNPs are more effective in a red blood cell hemolysis at pH 5.5, indicating a synergistic effect of the protonated imidazole groups of Hchol and cholesterol on endosomal membrane destabilization. Furthermore, mRNA delivery is substantially enhanced in mice treated with Hchol-LNPs. Importantly, LNP-encapsulated SARS-CoV-2 spike mRNA vaccinations induce potent antigen-specific antibodies against SARS-CoV-2. Overall, incorporating Hchol into LNP formulations enables efficient endosomal escape and stability, leading to an mRNA delivery vehicle with a higher delivery efficiency.


Assuntos
Colesterol , Nanopartículas , RNA Mensageiro , SARS-CoV-2 , Animais , Colesterol/química , Colesterol/análogos & derivados , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , Humanos , Histidina/química , Histidina/análogos & derivados , Lipídeos/química , COVID-19 , Vacinas contra COVID-19/química , Endossomos/metabolismo , Feminino , Hemólise/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Lipossomos
12.
J Nanosci Nanotechnol ; 13(11): 7325-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245251

RESUMO

In this study, polyethylenimine-dexamethasone (PEI-Dexa) was conjugated to polyethylene glycol-oligo (glutamic acid) derivatives (PEG-Glu), and the ability of this conjugated derivative's gene transfection efficiency was investigated. Dexamethasone is the potent ligand of the glucocorticoid receptor which facilitates the transfer into nucleus, and it is known to enlarge the nuclear pore complexes. PEG facilitates the formation of polyplexes with improved solubility, reduced aggregation, lower cytotoxicity, and possibly decreases opsonization with serum proteins in the bloodstream. In gel retardation assays, PEG-Glu8-PEI-Dexa/pDNA and PEG-Glu10-PEI-Dexa/pDNA were completely retarded at or above polymer: pDNA weight ratios of 14 and 12, respectively. The physicochemical characteristics were studied by measuring the average size distribution and zeta-potential values of the complexes. In vitro transfection assays showed that PEG-Glu-PEI-Dexa/pDNA complexes displayed higher gene delivery efficiency than the PEI 2 kDa/pDNA complexes. In addition, PEG-Glu-PEI-Dexa was less toxic than PEI 25 kDa. These results indicate that PEG-Glu-PEI-Dexa has the potential to be used as an efficient gene carrier for nonviral gene therapy.


Assuntos
DNA/genética , Dexametasona/química , Ácido Glutâmico/química , Nanocápsulas/química , Polietilenoglicóis/química , Polietilenoimina/química , Transfecção/métodos , DNA/administração & dosagem , Difusão , Células HEK293 , Humanos , Teste de Materiais , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Tamanho da Partícula
13.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36829996

RESUMO

Targeted drugs have been used to treat mitochondrial dysfunction-related diseases, including metabolic disorders and cancer; however, targeting and penetrating intracellular organelles remains a challenge. Dominant targeting approaches for therapeutic delivery are detailed in many nanoemulsion studies and show the tremendous potential of targeted delivery to inhibit cancer cell growth. Dequalinium (DQA) and α-tocopherol succinate (α-TOS) are good agents for targeting mitochondria. In this study, we aimed to develop a mitochondria-targeting emulsion, using DQA and α-TOS (DTOS), for cancer treatment. DTOS emulsions of 150-170 nm in diameter were formulated using homogenization. DQA and α-TOS were used as bifunctional agents (surfactants) to stabilize the nanoemulsion and anticancer drugs. Various molar ratios of DQA and α-TOS were tested to determine the optimal condition, and DTOS 5-5 was selected for further study. The DTOS emulsion showed improved stability, as evidenced by its ability to remain stable for three years at room temperature. This stability, combined with its effective targeting of mitochondria, led to inhibition of 71.5% of HeLa cells after 24 h. The DTOS emulsion effectively inhibited spheroid growth in the 3D model, as well as prevented the growth of HeLa cells grafted onto zebrafish larvae. These results highlight the DTOS emulsion's promising potential for mitochondria-targeting and cancer treatment.

14.
Pharmaceutics ; 15(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986864

RESUMO

The growing evolution of bacterial resistance to antibiotics represents a global issue that not only impacts healthcare systems but also political and economic processes. This necessitates the development of novel antibacterial agents. Antimicrobial peptides have shown promise in this regard. Thus, in this study, a new functional polymer was synthesized by joining a short oligopeptide sequence (Phe-Lys-Phe-Leu, FKFL) to the surface of a second-generation polyamidoamine (G2 PAMAM) dendrimer as an antibacterial component. This method of synthesis proved simple and resulted in a high conjugation yield of the product FKFL-G2. To determine its antibacterial potential, FKFL-G2 was subsequently analyzed via mass spectrometry, a cytotoxicity assay, bacterial growth assay, colony-forming unit assay, membrane permeabilization assay, transmission electron microscopy, and biofilm formation assay. FKFL-G2 was found to exhibit low toxicity to noncancerous NIH3T3 cells. Additionally, FKFL-G2 had an antibacterial effect on Escherichia coli and Staphylococcus aureus strains by interacting with and disrupting the bacterial cell membrane. Based on these findings, FKFL-G2 shows promise as a potential antibacterial agent.

15.
Int J Biol Macromol ; 249: 126090, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541478

RESUMO

To prevent bacterial contamination on solid surfaces, a simple yet efficient antibacterial coating was developed in a substrate-independent manner by using the catechol-conjugated carboxymethyl chitosan (CMC-DOPA). The CMC-DOPA was firstly synthesized via an aza-Michael reaction with methyl acrylate and the subsequent acyl substitution with dopamine. The coating strategy consists of spin-coating-assisted deposition of CMC-DOPA on polydopamine-coated substrates and coordination-driven crosslinks between catechol groups and Fe3+ ions in sequence, producing the multilayered CMC-DOPA films. The film thickness was controllable depending on the concentration of CMC-DOPA. Compared to bare controls, the CMC-DOPA-coated substrates reduced the bacterial adhesion by up to 99.8 % and 96.2 % for E. coli and S. aureus, respectively. It is demonstrated that the CMC-DOPA coating can be a robust antibacterial coating across various pH environments, inhibiting bacterial adhesion by 78.7 %, 95.1 %, and 93.2 %, respectively, compared to the control, even after 7 days of acidic, physiological, and alkaline pH treatment. The current coating approach could be applied to various substrates including silicon dioxide, titanium dioxide, and polyurethane. Given its simple and versatile coating capability, we think that the coordination-driven CMC-DOPA coating could be useful for various medical devices and implants.


Assuntos
Quitosana , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Dopamina/farmacologia , Di-Hidroxifenilalanina , Materiais Revestidos Biocompatíveis/farmacologia
16.
J Microbiol ; 61(8): 755-764, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37684534

RESUMO

Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly encode two structural (L1 and L2) and seven functional (E1, E2, E4-E7, and E8) proteins. L2, the minor structural protein of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S-S-pT-P)-containing phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus), and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-, and Gammapapillomavirus genera.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Proteínas do Capsídeo/genética , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Quinase 1 Polo-Like
17.
Pharmaceutics ; 14(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057039

RESUMO

Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)3, RH-(GFLG)3). The self-assembled RH-(GFLG)3 globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)3 nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with d-form peptides (LD (LRH-D(GFLG)3), DL (DRH-L(GFLG)3), and DD (DRH-D(GFLG)3). The RH-(GFLG)3 nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)3 nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)3 peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications.

18.
J Biomater Sci Polym Ed ; 33(8): 976-994, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038285

RESUMO

Improving the transfection efficiency of non-viral carriers by using cationic polymers is a useful approach to addressing several challenges in gene therapy, such as cellular uptake, endosomal escape, and toxicity. Among the various cationic polymers, polyamidoamine (PAMAM) dendrimers have been widely utilized because of the abundance of terminal functional groups, thereby enabling further functionalization and enhancing DNA condensation and internalization into cells. The combination of various functional groups is required for these PAMAM dendrimer derivatives to function appropriately for gene delivery. Herein, we synthesized PAMAM G2-HRChol by conjugating dipeptide (histidine-arginine) and cholesterol at different ratios (6% or 23%) on the surface of PAMAM dendrimer generation 2 (PAMAM G2). Both PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% have buffering capacity, leading to improved endosomal escape after entering the cells. PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers were condensed with pDNA to form nano-polyplexes at a weight ratio of 4 (polymer/pDNA). Polyplexes are positively charged, which facilitates cellular uptake. The transfection efficiency of PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers was similar to that of PEI 25 kDa under optimum conditions, and the cytotoxicity was much lower than that of PEI 25 kDa in HeLa cells. In addition, after apoptin gene transfection was performed, cell death ratios of 34.47% and 22.47% were observed for PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23%, respectively. The results show that a suitable amount of cholesterol can improve gene transfection efficiency, and the PAMAM G2-HRChol 6% dendrimer could be a potential gene carrier in HeLa cells.


Assuntos
Dendrímeros , Dendrímeros/química , Dipeptídeos , Técnicas de Transferência de Genes , Células HeLa , Humanos , Poliaminas , Transfecção
19.
Macromol Biosci ; 22(11): e2200310, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074994

RESUMO

Catechol and/or pyrogallol groups are recognized as crucial for the formation of polyphenol coatings on various substrates. Meanwhile, studies on polyphenolic molecules that do not contain such groups are relatively rare. The key molecule in turmeric-based universal (i.e., substrate-independent) coatings is curcumin, which contains no catechol or pyrogallol groups. As chemically reactive hydroxyl groups would remain after curcumin coating, it is hypothesized that curcumin coating can serve as a reactive layer for controlling interfacial properties. In this study, a curcumin-based surface modification method is developed to graft polymer brushes from various substrates, including titanium dioxide, gold, glass, stainless steel, and nylon. α-Bromoisobutyryl bromide, a polymerization initiator, is introduced to the curcumin-coated substrates via esterification; subsequently, poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) is grafted from the surfaces. Compared to the control surfaces, poly(OEGMA)-grafted surfaces significantly suppress bacterial adhesion by up to 99.4%, demonstrating their antibacterial properties. Considering its facile and versatile surface modification, curcumin-based polymer grafting can be an efficient method for controlling the chemical/physical properties of surfaces in a substrate-independent manner.


Assuntos
Curcumina , Curcumina/farmacologia , Propriedades de Superfície , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Pirogalol , Polímeros/química , Antibacterianos/farmacologia
20.
Bioconjug Chem ; 22(6): 1046-55, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21528924

RESUMO

In this study, we introduced histidine residues into l-arginine grafted PAMAM G4 dendrimers to enhance proton buffering capacity and evaluated the physicochemical characteristics and transfection efficacies in vitro. The results showed that the synthesized PAMAM G4 derivatives effectively delivered pDNA inside cells and the transfection level improved considerably as the number of histidine residues increased. Grafting histidine residues into the established polymer vector PAMAM G4-arginine improved their proton buffering capacity. The cytotoxicity of PAMAM G4 derivatives was tested and it was confirmed that they displayed relatively lower cytotoxicity compared to PEI25KD in various cell lines. Also, confocal microscopy results revealed that PAMAM G4 derivatives effectively delivered pDNA into cells, particularly into the nucleus. These PAMAM dendrimer derivatives conjugated with histidines and arginines may provide a promising polymeric gene carrier system.


Assuntos
DNA/genética , Dendrímeros/química , Vetores Genéticos/química , Nylons/química , Transfecção/métodos , Animais , Buprenorfina/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dendrímeros/síntese química , Dendrímeros/farmacologia , Relação Dose-Resposta a Droga , Vetores Genéticos/síntese química , Vetores Genéticos/farmacologia , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Nylons/síntese química , Nylons/farmacologia , Plasmídeos , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA