Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pancreatology ; 21(8): 1460-1465, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34580018

RESUMO

BACKGROUND: Maturity-onset diabetes of the young type 8 (MODY8 or CEL-MODY) is an inherited pancreatic disease characterized by chronic inflammation of the pancreas and diabetes. It is not known whether MODY8 patients have increased risk for developing pancreatic cancer. We investigated KRAS mutation load in duodenal juice from MODY8 patients, comparing with other groups of pancreatic disease. METHODS: Droplet digital PCR (ddPCR) was used to detect KRAS codon 12/13/61 mutations in duodenal juice sampled from 11 MODY8 patients, nine healthy subjects and 100 patients clinically investigated due to suspected pancreatic disease. RESULTS: KRAS mutations were detected in 4/11 patients with MODY8 (36%), 1/9 healthy subjects (11%), 15/44 patients with chronic pancreatitis (CP, 34%), 3/5 patients with pancreatic ductal adenocarcinoma (PDAC, 60%), 3/20 patients with acute pancreatitis (15%), 0/13 patients with other pancreatic disorders and 2/18 patients with nonpancreatic gastrointestinal disease (11%). Of the 28 positive juice samples, 25 (89%) had low-abundance mutations in codons 12/13, with a variant allele frequency (VAF) less than 1%. KRAS-positive patients with MODY8 or CP had significantly lower VAFs than patients with PDAC (Mann-Whitney U test; p = 0.041). Although the overall mutation detection rate was higher for subjects ≥50 years old (26%) than for younger subjects (15%), the difference was not statistically significant. CONCLUSIONS: KRAS mutations were detectable in duodenal juice from MODY8 patients, but with low abundance and at the same frequency as in CP patients. The discriminative value of the analysis with regard to other pancreatic disease was limited.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite , Proteínas Proto-Oncogênicas p21(ras)/genética , Doença Aguda , Diabetes Mellitus Tipo 2 , Humanos , Pessoa de Meia-Idade , Mutação , Suco Pancreático , Neoplasias Pancreáticas/genética , Reação em Cadeia da Polimerase , Neoplasias Pancreáticas
2.
J Inherit Metab Dis ; 44(1): 240-252, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876354

RESUMO

Short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), encoded by the HADH gene, is a ubiquitously expressed mitochondrial enzyme involved in fatty acid oxidation. This protein also plays a role in insulin secretion as recessive HADH mutations cause congenital hyperinsulinism of infancy (CHI) via loss of an inhibitory interaction with glutamate dehydrogenase (GDH). Here, we present a functional evaluation of 16 SCHAD missense variants identified either in CHI patients or by high-throughput sequencing projects in various populations. To avoid interactions with endogenously produced SCHAD protein, we assessed protein stability, subcellular localization, and GDH interaction in a SCHAD knockout HEK293 cell line constructed by CRISPR-Cas9 methodology. We also established methods for efficient SCHAD expression and purification in E. coli, and tested enzymatic activity of the variants. Our analyses showed that rare variants of unknown significance identified in populations generally had similar properties as normal SCHAD. However, the CHI-associated variants p.Gly34Arg, p.Ile184Phe, p.Pro258Leu, and p.Gly303Ser were unstable with low protein levels detectable when expressed in HEK293 cells. Moreover, CHI variants p.Lys136Glu, p.His170Arg, and p.Met188Val presented normal protein levels but displayed clearly impaired enzymatic activity in vitro, and their interaction with GDH appeared reduced. Our results suggest that pathogenic missense variants of SCHAD either make the protein target of a post-translational quality control system or can impair the function of SCHAD without influencing its steady-state protein level. We did not find any evidence that rare SCHAD missense variants observed only in the general population and not in CHI patients are functionally affected.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/genética , Hiperinsulinismo Congênito/enzimologia , Hiperinsulinismo Congênito/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Glutamato Desidrogenase/metabolismo , Células HEK293 , Humanos , Secreção de Insulina/genética , Fenótipo
3.
BMC Cancer ; 19(1): 11, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611220

RESUMO

BACKGROUND: Reliable methods are needed to identify patients with early-stage cancer or high-grade precancerous lesions in the pancreas. Analysis of pancreatic juice to detect somatic mutations could represent one such approach. Here we investigated the concordance between mutations found in the primary tumor and pancreatic juice from the same patient. METHODS: Amplicon-based targeted deep sequencing was performed on samples from 21 patients with pancreatic ductal adenocarcinoma (PDAC) who had undergone Whipple's operation. Mutation profiles were determined in formalin-fixed sections of the primary tumor and in pancreatic juice sampled from the main pancreatic duct during surgery. RESULTS: Using a cut-off of 3% for variant allele frequency, KRAS mutations were detected in 20/21 primary tumors (95%) and in 15/21 (71%) juice samples. When also considering low-frequency variants, KRAS mutations were found in 20/21 juice samples. Most juice samples exhibited multiple KRAS variants not seen in the primary tumor, and only in 11 cases (52%) did the most abundant variant of the juice correspond to the KRAS mutation detected in the tumor. TP53 mutations were found in 16 tumors (76%) and six juice samples (29%). Among the positive juice samples, only one exhibited more than a single TP53 mutation. Detection of both KRAS and TP53 mutations was fully concordant in the primary tumor and juice sample in 7/21 cases (33%). CONCLUSIONS: Pancreatic juice from PDAC patients is rich in KRAS mutations often not seen in the primary tumor and possibly reflecting precancerous lesions in other regions of the pancreas. The inclusion of TP53 mutation detection and additional markers must therefore be considered for fully exploiting the clinical potential of pancreatic juice samples in early cancer detection.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Análise Mutacional de DNA , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Mutação/genética , Pâncreas/metabolismo , Pâncreas/patologia , Suco Pancreático/metabolismo
4.
Nat Commun ; 13(1): 69, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013251

RESUMO

Epidemiological studies have established a positive association between obesity and the incidence of postmenopausal breast cancer. Moreover, it is known that obesity promotes stem cell-like properties of breast cancer cells. However, the cancer cell-autonomous mechanisms underlying this correlation are not well defined. Here we demonstrate that obesity-associated tumor formation is driven by cellular adaptation rather than expansion of pre-existing clones within the cancer cell population. While there is no correlation with specific mutations, cellular adaptation to obesity is governed by palmitic acid (PA) and leads to enhanced tumor formation capacity of breast cancer cells. This process is governed epigenetically through increased chromatin occupancy of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPB). Obesity-induced epigenetic activation of C/EBPB regulates cancer stem-like properties by modulating the expression of key downstream regulators including CLDN1 and LCN2. Collectively, our findings demonstrate that obesity drives cellular adaptation to PA drives tumor initiation in the obese setting through activation of a C/EBPB dependent transcriptional network.


Assuntos
Neoplasias da Mama/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hormônios , Ácido Palmítico/metabolismo , Adulto , Idoso , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/metabolismo
5.
Physiol Behav ; 173: 298-304, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242469

RESUMO

A recent study reported that a special weekly scheduled time-restricted feeding regimen (TRF), i.e., no food consumption for 15h during the light (inactive) phase per day for 5 weekdays, attenuated the outcome of diverse nutritional challenges in response to high-fat diet in mice. In the present study, we wanted to further test whether this TRF could restrict body weight gain in both juvenile and adult animals when fed a high-fat diet. Fifty male Sprague-Dawley rats at ages from 5 to 27weeks were used. First, we found that freely fed rats with 60% fat diet gained weight significantly, which was associated with more calorie intake (particularly during light phase) than those fed standard food (7% fat). Secondly, we found that TRF restricted high-fat diet-induced weight gain in both groups of juvenile rats (5 and 13weeks of age) compared to freely fed rats with high-fat diet, despite the same levels of 24h-calorie intake during either weekdays or the weekend. Thirdly, we found that TRF did not restrict high-fat diet-induce weight gain in adult rats (27weeks of age). Thus, we suggest that this special TRF regimen could be further tested in humans (particularly young adults) for the purpose of obesity prevention.


Assuntos
Ritmo Circadiano/fisiologia , Dieta Hiperlipídica/efeitos adversos , Privação de Alimentos/fisiologia , Obesidade/etiologia , Aumento de Peso/fisiologia , Fatores Etários , Análise de Variância , Animais , Composição Corporal/fisiologia , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Comportamento Alimentar/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA