Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(5): 7782-7792, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299533

RESUMO

In contrast to conventional surface-enhanced Raman scattering (SERS) platforms implemented on non-biological substrates, silk fibroin has the unique advantages of long-term biosafety and controllable biodegradability for in vitro and in vivo biomedical applications, as well as flexibility and process-compatibility. In this study, a silk fibroin film was developed to fabricate a flexible SERS sensor template with nanogap-rich gold nanoislands. The proposed biological SERS platform presents fairly good enhancements in detection performance such as detection limit, sensitivity, and signal-to-noise ratio. In particular, the sensitivity improvement was by more than 10 times compared to that of the counterpart sample, and an excellent spatial reproducibility of 2.8% was achieved. In addition, the near-field calculation results were consistent with the experimental results, and the effect of surface roughness of the silk substrate was investigated in a quantitative way. It is believed that biological SERS-active sensors could provide the potential for highly sensitive, cost-effective, and easily customizable nanophotonic platforms that include new capabilities for future healthcare devices.


Assuntos
Fibroínas , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
2.
Opt Express ; 29(4): 6179-6187, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726144

RESUMO

In this study, surface-enhanced Raman scattering (SERS) scheme is combined with localized surface plasmon resonance (LSPR) detection on a thin gold film with stripe patterns of gold nanoparticles (GNPs) via convective self-assembly (CSA) method. The potential of dual modal plasmonic substrates was evaluated by binding 4-ABT and IgG analytes, respectively. SERS experiments presented not only a high sensitivity with a detection limit of 4.7 nM and an enhancement factor of 1.34 × 105, but an excellent reproducibility with relative standard deviation of 5.5%. It was found from plasmonic sensing experiments by immobilizing IgG onto GNP-mediated gold film that detection sensitivity was improved by more than 211%, compared with a conventional bare gold film. Our synergistic SERS-LSPR approach based on a simple and cost-effective CSA method could open a route for sensitive, reliable and reproducible dual modal detection to expand the application areas.

3.
Opt Express ; 28(3): 3598-3606, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122025

RESUMO

To improve both sensitivity and reliability, a hybrid SERS substrate of combining gold nanoislands (GNI) with periodic MgF2 nanopillar arrays was successfully developed. SERS detection performance of the proposed substrates was evaluated in terms of enhancement effect, signal-to-noise ratio (SNR), linearity, reproducibility and repeatability, and compared with the performance of a conventional SERS substrate based on GNI. Experimental and simulation results presented that significant improvement of SERS intensity and SNR by more than 3 times and a notable reduction in relative standard deviation were obtained. We hope that the suggested SERS platform with unique advantages in sensitivity and reliability could be extended to point-of-care detection of a variety of biomolecular reactions.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman , Simulação por Computador , Campos Eletromagnéticos , Nanopartículas Metálicas/ultraestrutura , Microtecnologia
4.
Sensors (Basel) ; 19(8)2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31010067

RESUMO

Surface plasmon resonance (SPR) sensors based on a silver film suffer from signal degradation due to silver oxidation in aqueous sensing environments. To overcome this limitation, we fabricated the planar plasmonic substrate employing an atomic MoS2 layer on a silver surface. Successful production of a large-area MoS2 monolayer blocks the penetration of oxygen and water molecules. In addition, we theoretically and experimentally found that MoS2 layer on the silver film can improve the SPR sensitivity and stability significantly. In this study, the proposed SPR substrate has the potential to provide highly enhanced sensor platforms for surface-limited molecular detections.

5.
Sensors (Basel) ; 16(9)2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27618043

RESUMO

As surface plasmon resonance (SPR)-based biosensors are well translated into biological, chemical, environmental, and clinical fields, it is critical to further realize stable and sustainable systems, avoiding oxidation susceptibility of metal films-in particular, silver substrates. We report an enhanced SPR detection performance by incorporating a TiO2 layer on top of a thin silver film. A uniform TiO2 film fabricated by electron beam evaporation at room temperature is an effective alternative in bypassing oxidation of a silver film. Based on our finding that the sensor sensitivity is strongly correlated with the slope of dispersion curves, SPR sensing results obtained by parylene film deposition shows that TiO2/silver hybrid substrates provide notable sensitivity improvement compared to a conventional bare silver film, which confirms the possibility of engineering the dispersion characteristic according to the incidence wavelength. The reported SPR structures with TiO2 films enhance the sensitivity significantly in water and air environments and its overall qualitative trend in sensitivity improvement is consistent with numerical simulations. Thus, we expect that our approach can extend the applicability of TiO2-mediated SPR biosensors to highly sensitive detection for biomolecular binding events of low concentrations, while serving a practical and reliable biosensing platform.

6.
Opt Express ; 23(14): 18777-85, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191938

RESUMO

We demonstrated an enhanced surface plasmon resonance (SPR) detection by incorporating a nanoporous gold film on a thin gold substrate. Nanoscale control of thickness and roughness of the nanoporous layer was successfully accomplished by oblique angle deposition. In biosensing experiments, the results obtained by biotin-streptavidin interaction showed that SPR samples with a nanoporous gold layer provided a notable sensitivity improvement compared to a conventional bare gold film, which is attributed to an excitation of local plasmon field and an increased surface reaction area. Imaging sensitivity enhancement factor was employed to estimate an overall sensor performance of the fabricated samples and an optimal SPR structure was determined. Our approach is intended to show the feasibility and extend the applicability of the nanoporous gold film-mediated SPR biosensor to diverse biomolecular binding events.

7.
Biosensors (Basel) ; 11(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34821657

RESUMO

Novel concepts for developing a surface-enhanced Raman scattering (SERS) sensor based on biocompatible materials offer great potential in versatile applications, including wearable and in vivo monitoring of target analytes. Here, we report a highly sensitive SERS sensor consisting of a biocompatible silk fibroin substrate with a high porosity and gold nanocracks. Our silk-based SERS detection takes advantage of strong local field enhancement in the nanoscale crack regions induced by gold nanostructures evaporated on a porous silk substrate. The SERS performance of the proposed sensor is evaluated in terms of detection limit, sensitivity, and linearity. Compared to the performance of a counterpart SERS sensor with a thin gold film, SERS results using 4-ABT analytes present that a significant improvement in the detection limit and sensitivity by more than 4 times, and a good linearity and a wide dynamic range is achieved. More interestingly, overlap is integral, and a quantitative measure of the local field enhancement is highly consistent with the experimental SERS enhancement.


Assuntos
Técnicas Biossensoriais , Fibroínas , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA