Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Converg ; 9(1): 1, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985608

RESUMO

In this study, we performed metal (Ag, Ni, Cu, or Pd) electroplating of core-shell metallic Ag nanowire (AgNW) networks intended for use as the anode electrode in organic light-emitting diodes (OLEDs) to modify the work function (WF) and conductivity of the AgNW networks. This low-cost and facile electroplating method enabled the precise deposition of metal onto the AgNW surface and at the nanowire (NW) junctions. AgNWs coated onto a transparent glass substrate were immersed in four different metal electroplating baths: those containing AgNO3 for Ag electroplating, NiSO4 for Ni electroplating, Cu2P2O7 for Cu electroplating, and PdCl2 for Pd electroplating. The solvated metal ions (Ag+, Ni2+, Cu2+, and Pd2+) in the respective electroplating baths were reduced to the corresponding metals on the AgNW surface in the galvanostatic mode under a constant electric current achieved by linear sweep voltammetry via an external circuit between the AgNW networks (cathode) and a Pt mesh (anode). The amount of electroplated metal was systematically controlled by varying the electroplating time. Scanning electron microscopy images showed that the four different metals (shells) were successfully electroplated on the AgNWs (core), and the nanosize-controlled electroplating process produced metal NWs with varying diameters, conductivities, optical transmittances, and WFs. The metal-electroplated AgNWs were successfully employed as the anode electrodes of the OLEDs. This facile and low-cost method of metal electroplating of AgNWs to increase their WFs and conductivities is a promising development for the fabrication of next-generation OLEDs.

2.
ACS Omega ; 6(39): 25529-25538, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632210

RESUMO

A new approach to the recycling of spent coffee grounds is described in which lignin, a chemical component of spent coffee, is used as an electrolyte additive in aluminum-air batteries. The effect of lignin on the performance of aluminum-air batteries has been investigated by weight loss measurement, galvanostatic discharge test, and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiency is improved up to 37.3% and fuel efficiency up to 21.7% at 500 ppm of lignin molecules. The chemisorption of lignin molecules on the aluminum surface improves battery performance. Adsorption of lignin molecules onto the aluminum surface is driven by the electrostatic interaction between the lignin's hydroxyl group and the aluminum surface. The mechanism for the performance improvement is explained by the chemisorption behavior of lignin molecules. The adsorption behavior has been investigated by scanning electronic microscopy with energy-dispersive spectroscopy (SEM-EDS), laser scanning microscopy (LSM), atomic force microscopy (AFM), Freundlich adsorption isotherm, Fourier-transform infrared (FT-IR) spectroscopy, and the computational calculation of adsorption energies based on the density functional theory (DFT).

3.
ACS Appl Mater Interfaces ; 13(36): 42311-42328, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464527

RESUMO

Gold nanoparticles (AuNPs) are used in various biological applications because of their small surface area-to-volume ratios, ease of synthesis and modification, low toxicity, and unique optical properties. These properties can vary significantly with changes in AuNP size, shape, composition, and arrangement. Thus, the stabilization of AuNPs is crucial to preserve the properties required for biological applications. In recent years, various polymer-based physical and chemical methods have been extensively used for AuNP stabilization. However, a new stabilization approach using biomolecules has recently attracted considerable attention. Biomolecules such as DNA, RNA, peptides, and proteins are representative of the biomoieties that can functionalize AuNPs. According to several studies, biomolecules can stabilize AuNPs in biological media; in addition, AuNP-conjugated biomolecules can retain certain biological functions. Furthermore, the presence of biomolecules on AuNPs significantly enhances their biocompatibility. This review provides a representative overview of AuNP functionalization using various biomolecules. The strategies and mechanisms of AuNP functionalization using biomolecules are comprehensively discussed in the context of various biological fields.


Assuntos
Anticorpos Imobilizados/química , Ácidos Nucleicos Imobilizados/química , Proteínas Imobilizadas/química , Nanopartículas Metálicas/química , Adsorção , DNA/química , Ouro/química , Lipídeos/química , Peptídeos/química , Polissacarídeos/química , RNA/química , Eletricidade Estática
4.
Materials (Basel) ; 14(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34442932

RESUMO

Many research studies have been conducted on the corrosion inhibition performance of imidazole in acidic environments such as in the piping of a petrochemical plant. However, there has been no study on the effect of imidazole in alkaline conditions such as a local district water heating environment. Therefore, in this study, the effect of imidazole as a corrosion inhibitor on carbon steel weldment was investigated in alkaline district heating water. Inhibition efficiency and electrochemical properties were investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy. As the concentration of imidazole increased up to 500 ppm, inhibition efficiency increased up to 91.7%. At 1000 ppm, inhibition efficiency decreased. Atomic force microscopy showed that surface coverage of imidazole at 1000 ppm is lower than that of imidazole at 500 ppm. X-ray photoelectron spectroscopy showed that with 500 ppm of imidazole, the amount of pyrrole type interaction is 4.8 times larger than pyridine type interaction. At 1000 ppm of imidazole, the amount of pyridine type interaction is 3.49 times larger than pyrrole type interaction. Depending on the concentration of imidazole, the ratio of interaction between carbon steel and imidazole affected inhibition efficiency.

5.
ACS Appl Mater Interfaces ; 12(35): 39479-39486, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805957

RESUMO

The low sheet resistance and high optical transparency of silver nanowires (AgNWs) make them a promising candidate for use as the flexible transparent electrode of light-emitting diodes (LEDs). In a perovskite LED (PeLED), however, the AgNW electrode can react with the overlying perovskite material by redox reactions, which limit the electroluminescence efficiency of the PeLED by causing the degradation of and generating defect states in the perovskite material. In this study, we prepared Ag-Ni core-shell NW electrodes using the solution-electroplating technique to realize highly efficient PeLEDs based on colloidal formamidinium lead bromide (FAPbBr3) nanoparticles (NPs). Solvated Ni ions from the NiSO4 source were deposited onto the surface of AgNW networks in three steps: (i) cathodic cleaning, (ii) adsorption of the Ni-ion complex onto the AgNW surface, and (iii) uniform electrodeposition of Ni. An ultrathin (∼3.5 nm) Ni layer was uniformly deposited onto the AgNW surface, which exhibited a sheet resistance of 16.7 Ω/sq and an optical transmittance of 90.2%. The Ag-Ni core-shell NWs not only increased the work function of the AgNW electrode, which facilitated hole injection into the emitting layer, but also suppressed the redox reaction between Ag and FAPbBr3 NPs, which prevented the degradation of the emitting layer and the generation of defect states in it. The resulting PeLEDs based on FAPbBr3 NPs with the Ag-Ni core-shell NWs showed high current efficiency of 44.01 cd/A, power efficiency of 35.45 lm/W, and external quantum efficiency of 9.67%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA