RESUMO
AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisossomos/enzimologia , Ubiquitina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adolescente , Adulto , Animais , Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Feminino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglicemiantes/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Adulto JovemRESUMO
The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.
Assuntos
Autofagia , Galectinas/metabolismo , Lisossomos/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Galectinas/deficiência , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Serina-Treonina Quinases TOR/genética , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologiaRESUMO
Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.
Assuntos
Hipertensão , Animais , Ratos , Hipertensão/patologia , Hipertensão/complicações , Masculino , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ratos Sprague-Dawley , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/etiologia , Ratos Endogâmicos SHR , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacosRESUMO
Mammalian homologs of yeast Atg8 protein (mAtg8s) are important in autophagy, but their exact mode of action remains ill-defined. Syntaxin 17 (Stx17), a SNARE with major roles in autophagy, was recently shown to bind mAtg8s. Here, we identified LC3-interacting regions (LIRs) in several SNAREs that broaden the landscape of the mAtg8-SNARE interactions. We found that Syntaxin 16 (Stx16) and its cognate SNARE partners all have LIR motifs and bind mAtg8s. Knockout of Stx16 caused defects in lysosome biogenesis, whereas a Stx16 and Stx17 double knockout completely blocked autophagic flux and decreased mitophagy, pexophagy, xenophagy, and ribophagy. Mechanistic analyses revealed that mAtg8s and Stx16 control several properties of lysosomal compartments including their function as platforms for active mTOR. These findings reveal a broad direct interaction of mAtg8s with SNAREs with impact on membrane remodeling in eukaryotic cells and expand the roles of mAtg8s to lysosome biogenesis.
Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Lisossomos/metabolismo , Proteínas Qa-SNARE/metabolismo , Sintaxina 16/metabolismo , Motivos de Aminoácidos , Família da Proteína 8 Relacionada à Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Redes e Vias Metabólicas , Ligação Proteica , Domínios Proteicos , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/genética , RNA Interferente Pequeno/genética , Sintaxina 16/antagonistas & inibidores , Sintaxina 16/genéticaRESUMO
Autophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear. Here we show that in response to lysosomal damage, the prototypical cytosolic secretory autophagy cargo IL-1ß is recognized by specialized secretory autophagy cargo receptor TRIM16 and that this receptor interacts with the R-SNARE Sec22b to recruit cargo to the LC3-II+ sequestration membranes. Cargo secretion is unaffected by downregulation of syntaxin 17, a SNARE promoting autophagosome-lysosome fusion and cargo degradation. Instead, Sec22b in combination with plasma membrane syntaxin 3 and syntaxin 4 as well as SNAP-23 and SNAP-29 completes cargo secretion. Thus, secretory autophagy utilizes a specialized cytosolic cargo receptor and a dedicated SNARE system. Other unconventionally secreted cargo, such as ferritin, is secreted via the same pathway.
Assuntos
Autofagia , Proteínas de Ligação a DNA/metabolismo , Interleucina-1beta/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas R-SNARE/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Ferritinas/metabolismo , Humanos , Monócitos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína LigasesRESUMO
The protein p62/Sequestosome 1 (p62) has been described as a selective autophagy receptor and independently as a platform for pro-inflammatory and other intracellular signaling. How these seemingly disparate functional roles of p62 are coordinated has not been resolved. Here, we show that TAK1, a kinase involved in immune signaling, negatively regulates p62 action in autophagy. TAK1 reduces p62 localization to autophagosomes, dampening the autophagic degradation of both p62 and p62-directed autophagy substrates. TAK1 also relocalizes p62 into dynamic cytoplasmic bodies, a phenomenon that accompanies the stabilization of TAK1 complex components. On the other hand, p62 facilitates the assembly and activation of TAK1 complexes, suggesting a connection between p62's signaling functions and p62 body formation. Thus, TAK1 governs p62 action, switching it from an autophagy receptor to a signaling platform. This ability of TAK1 to disable p62 as an autophagy receptor may allow certain autophagic substrates to accumulate when needed for cellular functions.
Assuntos
Autofagia/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Autofagossomos/metabolismo , Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , MAP Quinase Quinase Quinases/genética , Microscopia Confocal , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Sequestossoma-1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Host-directed therapy in tuberculosis is a potential adjunct to antibiotic chemotherapy directed at Mycobacterium tuberculosis Ambroxol, a lead compound, emerged from a screen for autophagy-inducing drugs. At clinically relevant doses, ambroxol induced autophagy in vitro and in vivo and promoted mycobacterial killing in macrophages. Ambroxol also potentiated rifampin activity in a murine tuberculosis model.
Assuntos
Ambroxol/farmacologia , Antituberculosos/farmacologia , Autofagia/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/microbiologiaRESUMO
Bone tissue engineering (BTE) strategies have been developed to address challenges in orthopedic and dental therapy by expediting osseointegration and new bone formation. In this study, we developed irregular porous Ti-6Al-4V scaffolds coated with reduced graphene oxide (rGO), specifically rGO-pTi, and investigated their ability to stimulate osseointegration in vivo. The rGO-pTi scaffolds exhibited unique irregular micropores and high hydrophilicity, facilitating protein adsorption and cell growth. In vitro assays revealed that the rGO-pTi scaffolds increased alkaline phosphatase (ALP) activity, mineralization nodule formation, and osteogenic gene upregulation in MC3T3-E1 preosteoblasts. Moreover, in vivo transplantation of rGO-pTi scaffolds in rabbit calvarial bone defects showed improved bone matrix formation and osseointegration without hemorrhage. These findings highlight the potential of combining rGO with irregular micropores as a promising BTE scaffold for bone regeneration.
Assuntos
Ligas , Grafite , Osteogênese , Impressão Tridimensional , Alicerces Teciduais , Titânio , Grafite/química , Grafite/farmacologia , Titânio/química , Titânio/farmacologia , Animais , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Camundongos , Porosidade , Coelhos , Ligas/química , Ligas/farmacologia , Engenharia Tecidual , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osseointegração/efeitos dos fármacos , Crânio/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Macroautophagy/autophagy delivers cytoplasmic cargo to lysosomes for degradation. In yeast, the single Atg8 protein plays a role in the formation of autophagosomes whereas in mammalian cells there are five to seven paralogs, referred to as mammalian Atg8s (mAtg8s: GABARAP, GABARAPL1, GABARAPL2, LC3A, LC3B, LC3B2 and LC3C) with incompletely defined functions. Here we show that a subset of mAtg8s directly control lysosomal biogenesis. This occurs at the level of TFEB, the principal regulator of the lysosomal transcriptional program. mAtg8s promote TFEB's nuclear translocation in response to stimuli such as starvation. GABARAP interacts directly with TFEB, whereas RNA-Seq analyses reveal that knockout of six genes encoding mAtg8s, or a triple knockout of the genes encoding all GABARAPs, diminishes the TFEB transcriptional program. We furthermore show that GABARAPs in cooperation with other proteins, IRGM, a factor implicated in tuberculosis and Crohn disease, and STX17, are required during starvation for optimal inhibition of MTOR, an upstream kinase of TFEB, and activation of the PPP3/calcineurin phosphatase that dephosphorylates TFEB, thus promoting its nuclear translocation. In conclusion, mAtg8s, IRGM and STX17 control lysosomal biogenesis by their combined or individual effects on MTOR, TFEB, and PPP3/calcineurin, independently of their roles in the formation of autophagosomal membranes. Abbreviations: AMPK: AMP-activated protein kinase; IRGM: immunity related GTPase M; mAtg8s: mammalian Atg8 proteins; MTOR: mechanistic target of rapamycin kinase; PPP3CB: protein phosphatase 3 catalytic subunit beta; RRAGA: Ras related GTP binding A.; STX17: syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1.
RESUMO
Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
Assuntos
Família da Proteína 8 Relacionada à Autofagia/fisiologia , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Calcineurina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/fisiologia , Transporte Proteico , Proteínas Qa-SNARE/metabolismoRESUMO
Lysosomal damage activates AMPK, a regulator of macroautophagy/autophagy and metabolism, and elicits a strong ubiquitination response. Here we show that the cytosolic lectin LGALS9 detects lysosomal membrane breach by binding to lumenal glycoepitopes, and directs both the ubiquitination response and AMPK activation. Proteomic analyses have revealed increased LGALS9 association with lysosomes, and concomitant changes in LGALS9 interactions with its newly identified partners that control ubiquitination-deubiquitination processes. An LGALS9-inetractor, deubiquitinase USP9X, dissociates from damaged lysosomes upon recognition of lumenal glycans by LGALS9. USP9X's departure from lysosomes promotes K63 ubiquitination and stimulation of MAP3K7/TAK1, an upstream kinase and activator of AMPK hitherto orphaned for a precise physiological function. Ubiquitin-activated MAP3K7/TAK1 controls AMPK specifically during lysosomal injury, caused by a spectrum of membrane-damaging or -permeabilizing agents, including silica crystals, the intracellular pathogen Mycobacterium tuberculosis, TNFSF10/TRAIL signaling, and the anti-diabetes drugs metformin. The LGALS9-ubiquitin system activating AMPK represents a novel signal transduction system contributing to various physiological outputs that are under the control of AMPK, including autophagy, MTOR, lysosomal maintenance and biogenesis, immunity, defense against microbes, and metabolic reprograming. ABBREVIATIONS: AMPK: AMP-activated protein kinase; APEX2: engineered ascorbate peroxidase 2; ATG13: autophagy related 13; ATG16L1: autophagy related 16 like 1; BMMs: bone marrow-derived macrophages; CAMKK2: calcium/calmodulin dependent protein kinase kinase 2; DUB: deubiquitinase; GPN: glycyl-L-phenylalanine 2-naphthylamide; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MERIT: membrane repair, removal and replacement; MTOR: mechanistic target of rapamycin kinase; STK11/LKB1: serine/threonine kinase 11; TNFSF10/TRAIL: TNF superfamily member 10; USP9X: ubiquitin specific peptidase 9 X-linked.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Galectinas/metabolismo , Lisossomos/patologia , Transdução de Sinais , Ubiquitina/metabolismo , Animais , Humanos , Lisossomos/metabolismo , Modelos Biológicos , UbiquitinaçãoRESUMO
Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a ß-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis.
Assuntos
Autofagia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Galectina 3/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Tuberculose/prevenção & controle , Proteínas tau/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologiaRESUMO
Membrane integrity is essential for cellular survival and function. The spectrum of mechanisms protecting cellular and intracellular membranes is not fully known. Our recent work has uncovered a cellular system termed MERIT for lysosomal membrane repair, removal and replacement. Specifically, lysosomal membrane damage induces, in succession, ESCRT-dependent membrane repair, macroautophagy/autophagy-dominant removal of damaged lysosomes, and initiation of lysosomal biogenesis via transcriptional programs. The MERIT system is governed by galectins, a family of cytosolically synthesized lectins recognizing ß-galactoside glycans. We found in this study that LGALS3 (galectin 3) detects membrane damage by detecting exposed lumenal glycosyl groups, recruits and organizes ESCRT components PDCD6IP/ALIX, CHMP4A, and CHMPB at damaged sites on the lysosomes, and facilitates ESCRT-driven repair of lysosomal membrane. At later stages, LGALS3 cooperates with TRIM16, an autophagy receptor-regulator, to engage autophagy machinery in removal of excessively damaged lysosomes. In the absence of LGALS3, repair and autophagy are less efficient, whereas TFEB nuclear translocation increases to compensate lysosomal deficiency via de novo lysosomal biogenesis. The MERIT system protects endomembrane integrity against a broad spectrum of agents damaging the endolysosomal network including lysosomotropic drugs, Mycobacterium tuberculosis, or neurotoxic MAPT/tau. ABBREVIATIONS: AMPK: AMP-activated protein kinase; APEX2: engineered ascorbate peroxidase 2; ATG13: autophagy related 13; ATG16L1: autophagy related 16 like 1; BMMs: bone marrow-derived macrophages; ESCRT: endosomal sorting complexes required for transport; GPN: glycyl-L-phenylalanine 2-naphthylamide; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MERIT: membrane repair, removal and replacement; MTOR: mechanistic target of rapamycin kinase; TFEB: transcription factor EB; TFRC: transferrin receptor; TRIM16: tripartite motif-containing 16.
Assuntos
Membrana Celular/metabolismo , Lisossomos/metabolismo , Animais , Autofagia , Cálcio/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Galectinas/metabolismo , Humanos , Modelos BiológicosRESUMO
A unique thermostable amylosucrase from Bifidobacterium thermophilum was produced as a recombinant protein with the half-life of 577 h at 50 °C. By adding 1.0 M fructose, turanose yield was improved from 22.7% to 43.3% with 1.0 M sucrose, and from 23.7% to 39.4% with 1.5 M sucrose. Sucrose consumption rate was greatest at 55 °C, but the lowest amount of turanose was produced. Thus, turanose yield from sucrose biomass was inversely proportional to reaction temperature and was highly dependent on [fructose]. Meanwhile, insoluble α-glucan yield was clearly reduced as [fructose] increased. With 1.0 M fructose + 1.0 M sucrose, glucan byproduct yield significantly decreased from 29.4% to 1.1%. Molecular weights of linear glucans were almost identical among various [sucrose]s and were homogenous with very low polydispersity. This unique dual reaction patterns of amylosucrase enzyme would be very useful for massive productions of two different biomaterials simply by changing sucrose biomass concentration.
Assuntos
Proteínas de Bactérias/química , Dissacarídeos/síntese química , Glucanos/síntese química , Glucosiltransferases/química , Sacarose/química , Edulcorantes/síntese química , Bifidobacterium/enzimologia , Frutose/química , Glucosiltransferases/isolamento & purificação , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Proteínas Recombinantes/química , TemperaturaRESUMO
The Ser/Thr protein kinase MTOR (mechanistic target of rapamycin kinase) regulates cellular metabolism and controls macroautophagy/autophagy. Autophagy has both metabolic and quality control functions, including recycling nutrients at times of starvation and removing dysfunctional intracellular organelles. Lysosomal damage is one of the strongest inducers of autophagy, and yet mechanisms of its activation in response to lysosomal membrane damage are not fully understood. Our recent study has uncovered a new signal transduction system based on cytosolic galectins that elicits autophagy by controlling master regulators of metabolism and autophagy, MTOR and AMPK, in response to lysosomal damage. Thus, intracellular galectins are not, as previously thought, passive tags recognizing damage to guide selective autophagy receptors, but control the activation state of AMPK and MTOR in response to endomembrane damage. Abbreviations: MTOR: mechanistic target of rapamycin kinase; AMPK: AMP-activated protein kinase / Protein Kinase AMP-Activated; SLC38A9: Solute Carrier Family 38 Member 9; APEX2: engineered ascorbate peroxidase 2; RRAGA/B: Ras Related GTP Binding A or B; LAMTOR1: Late Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 1; LGALS8: Lectin, Galactoside-Binding, Soluble, 8 / Galectin 8; LGALS9: Lectin, Galactoside-Binding, Soluble, 9 / Galectin 9; TAK1: TGF-Beta Activated Kinase 1 / Mitogen-Activated Protein Kinase Kinase Kinase 7 (MAP3K7); STK11/LKB1: Serine/Threonine Kinase 11 / Liver Kinase B1; ULK1: Unc-51 Like Autophagy Activating Kinase 1.
Assuntos
Autofagia , Proteínas Quinases Ativadas por AMP , Galectinas , Lisossomos , Serina-Treonina Quinases TORRESUMO
Using an established high-performance liquid chromatography (HPLC) method based on anion exchange chromatography, fraction collection, and electrochemical detection, the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OH-dG) can be analyzed rapidly and precisely in human urine samples. In addition, by ultraviolet (UV) detection, it was shown recently that it is possible to simultaneously analyze creatinine and 7-methylguanine (m(7)Gua), an RNA degradation product, in urine. By adding a fluorescence detector to the HPLC system, we now report that it is also possible to detect pteridins such as neopterin and biopterin. The fluorescence detection was evaluated in detail for neopterin, an immune response and tumor marker. The urinary content of neopterin, assessed by using the HPLC method, was verified with a commercial neopterin enzyme-linked immunosorbent assay (ELISA) kit as indicated by the high correlation between the two methods (r=0.98). In urinary samples from 58 young healthy individuals (male and female nonsmokers, ages 19-39 years), it was found that there was no significant correlation (r=-0.04) between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). In contrast, in urinary samples from 60 old healthy individuals (male and female nonsmokers, ages 60-86 years), there was a significant correlation (r=0.47) found between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). These findings strongly indicate that the higher level of immune response that was correlating with old age contributes significantly to the higher level of oxidative damage as assessed in the form of 8-OH-dG. Using this type of HPLC system, it is possible to evaluate oxidative DNA damage and immune response simultaneously using the respective urinary markers. These data may contribute to understanding of the pathophysiology of diseases such as infections and tumor progression where both oxidative stress and immune response occur simultaneously.
Assuntos
Envelhecimento/imunologia , Envelhecimento/urina , Biomarcadores/urina , Desoxiguanosina/análogos & derivados , Neopterina/imunologia , Neopterina/urina , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Automação , Cromatografia Líquida de Alta Pressão , Desoxiguanosina/urina , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Fatores de TempoRESUMO
Autophagy is a conserved eukaryotic process with metabolic, immune, and general homeostatic functions in mammalian cells. Mammalian autophagosomes fuse with lysosomes in a SNARE-driven process that includes syntaxin 17 (Stx17). How Stx17 translocates to autophagosomes is unknown. In this study, we show that the mechanism of Stx17 recruitment to autophagosomes in human cells entails the small guanosine triphosphatase IRGM. Stx17 directly interacts with IRGM, and efficient Stx17 recruitment to autophagosomes requires IRGM. Both IRGM and Stx17 directly interact with mammalian Atg8 proteins, thus being guided to autophagosomes. We also show that Stx17 is significant in defense against infectious agents and that Stx17-IRGM interaction is targeted by an HIV virulence factor Nef.
Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Qa-SNARE/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Transporte Proteico/genética , Proteínas Qa-SNARE/genética , Células THP-1 , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Selectivity of autophagy is achieved by target recognition; however, the number of autophagy receptors identified so far is limited. In this study we demonstrate that a subset of tripartite motif (TRIM) proteins mediate selective autophagy of key regulators of inflammatory signaling. MEFV/TRIM20, and TRIM21 act as autophagic receptors recognizing their cognate targets and delivering them for autophagic degradation. MEFV recognizes the inflammasome components NLRP3, CASP1 and NLRP1, whereas TRIM21 specifically recognizes the activated, dimeric from of IRF3 inducing type I interferon gene expression. MEFV and TRIM21 have a second activity, whereby they act not only as receptors but also recruit and organize key components of autophagic machinery consisting of ULK1, BECN1, ATG16L1, and mammalian homologs of Atg8, with a preference for GABARAP. MEFV capacity to organize the autophagy apparatus is affected by common mutations causing familial Mediterranean fever. These findings reveal a general mode of action of TRIMs as autophagic receptor-regulators performing a highly-selective type of autophagy (precision autophagy), with MEFV specializing in the suppression of inflammasome and CASP1 activation engendering IL1B/interleukin-1ß production and implicated in the form of cell death termed pyroptosis, whereas TRIM21 dampens type I interferon responses.
Assuntos
Autofagia/fisiologia , Proteínas de Transporte/imunologia , Inflamassomos/metabolismo , Transdução de Sinais/imunologia , Animais , Humanos , Interleucina-1beta/metabolismo , Mutação/imunologiaRESUMO
Macroautophagy/autophagy is a homeostatic process delivering cytoplasmic targets, including damaged organelles, to lysosomes for degradation; however, it is not completely understood how compromised endomembranes are recognized by the autophagic apparatus. We have described previously that the TRIM family of proteins act as receptors for selective autophagy. In this study we uncovered the property of TRIMs to directly interact with members of the family of cytosolic lectins termed galectins. Galectins patrol the cytoplasm and recognize compromised membranes. We show that TRIM16 uses LGALS3 (galectin 3) to detect damaged lysosomes and phagosomes. TRIM16 assembles the core autophagic machinery and is found in protein complexes with MTOR and TFEB, thus regulating their activity to set in motion endomembrane quality control. The TRIM16-LGALS3 system plays a key role in autophagic homeostasis of lysosomes and in the control of Mycobacterium tuberculosis in vivo.