Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Peripher Nerv Syst ; 22(3): 200-207, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28544463

RESUMO

Mutations in the NEFH gene encoding the heavy neurofilament protein are usually associated with neuronal damage and susceptibility to amyotrophic lateral sclerosis (ALS). Recently, frameshift variants in NEFH (p.Asp1004Glnfs*58 and p.Pro1008Alafs*56) have been reported to be the underlying cause of axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). The frameshift mutation resulted in a stop loss and translation of a cryptic amyloidogenic element (CAE) encoded by the 3' untranslated region (UTR). This study also identified a de novo c.3015_3027dup frameshift mutation predicting p.Lys1010Glnfs*57 in NEFH from a CMT2 family with an atypical clinical symptom of prominent proximal weakness. This mutation is located near the previously reported frameshift mutations, suggesting a mutational hotspot. Lower limb magnetic resonance imaging (MRI) revealed marked hyperintense signal changes in the thigh muscles compared with those in the calf muscles. Therefore, this study suggests that the stop loss and translational elongations by the 3' UTR of the NEFH mutations may be a relatively frequent genetic cause of axonal peripheral neuropathy with the specific characteristics of proximal dominant weakness.


Assuntos
Regiões 3' não Traduzidas/genética , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Mutação da Fase de Leitura/genética , Proteínas de Neurofilamentos/genética , Adulto , Doença de Charcot-Marie-Tooth/patologia , Análise Mutacional de DNA , Feminino , Humanos , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Condução Nervosa/genética , Linhagem
2.
Genes Genomics ; 40(1): 77-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29892902

RESUMO

The kinesin heavy chain isoform 5A (KIF5A) gene, which encodes a microtubule-based motor protein, plays an important role in the transport of organelles in the nerve cells. Mutations in the KIF5A showed a wide phenotypic spectrum from hereditary spastic paraplegia (HSP) to axonal Charcot-Marie-Tooth peripheral neuropathy type 2 (CMT2). This study identified three pathogenic KIF5A mutations in Korean CMT2 patients by whole exome sequencing. Two mutations (p.Arg204Trp and p.Arg280His) were previously reported, but p.Leu558Pro was determined to be a novel de novo mutation. All the mutations were not observed in the healthy controls and were located in highly conserved domains among vertebrate species. The p.Arg204Trp mutation was identified from a CMT2 patient with additional complex phenotypes of HSP, ataxia, fatigability and pyramidal sign, but the p.Arg280His and p.Leu588Pro mutations were identified in each axonal CMT2 patient. The p.Arg204Trp mutation was previously reported in a HSP patient with no CMT symptom. The p.Arg280His mutation was reported in a CMT2 patient, which was similarly with our case. However, it was also once reported in a HSP patient with pes cavus. As the first report in Korea, this study identified three KIF5A mutations as the underlying cause of axonal peripheral neuropathy with or without the HSP phenotype. We confirmed a wide inter- and intra-allelic phenotypic spectrum by the mutations in the KIF5A.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Cinesinas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Doença de Charcot-Marie-Tooth/fisiopatologia , Feminino , Humanos , Cinesinas/metabolismo , Masculino , Mutação , Linhagem , Fenótipo , República da Coreia , Sequenciamento do Exoma/métodos
3.
Mitochondrion ; 35: 54-58, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499982

RESUMO

Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation.


Assuntos
Heterozigoto , Síndrome MELAS/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , DNA Mitocondrial/química , DNA Mitocondrial/genética , Feminino , Humanos , Lactente , Síndrome MELAS/patologia , Masculino , Análise de Sequência de DNA , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA