Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613569

RESUMO

One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.


Assuntos
Neoplasias Colorretais , Neoplasias Gástricas , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias Gástricas/diagnóstico , Expiração , Testes Respiratórios/métodos , Neoplasias Colorretais/diagnóstico
2.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947978

RESUMO

The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-ß) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-ß can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-ß signaling by enhancing its expression and activation. Thus, TGF-ß signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-ß is critical for tumorigenesis and cancer progression. Thus, both TGF-ß and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-ß and oxidative stress in cancer, exposing new potential approaches in cancer biology.


Assuntos
Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Estresse Oxidativo , Transdução de Sinais
3.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384691

RESUMO

Autophagy is a catabolic process for unnecessary or dysfunctional cytoplasmic contents by lysosomal degradation pathways. Autophagy is implicated in various biological processes such as programmed cell death, stress responses, elimination of damaged organelles and development. The role of autophagy as a crucial mediator has been clarified and expanded in the pathological response to redox signalling. Autophagy is a major sensor of the redox signalling. Reactive oxygen species (ROS) are highly reactive molecules that are generated as by-products of cellular metabolism, principally by mitochondria. Mitochondrial ROS (mROS) are beneficial or detrimental to cells depending on their concentration and location. mROS function as redox messengers in intracellular signalling at physiologically low level, whereas excessive production of mROS causes oxidative damage to cellular constituents and thus incurs cell death. Hence, the balance of autophagy-related stress adaptation and cell death is important to comprehend redox signalling-related pathogenesis. In this review, we attempt to provide an overview the basic mechanism and function of autophagy in the context of response to oxidative stress and redox signalling in pathology.


Assuntos
Autofagia , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Animais , Humanos
4.
J Pathol ; 246(1): 115-126, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29876924

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild-type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT-dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated, using bioinformatics analyses, that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Ciclofilinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Oxaliplatina/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Idoso , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ciclofilinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Células HCT116 , Meia-Vida , Humanos , Masculino , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Ubiquitinação
5.
Nutrients ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892465

RESUMO

Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.


Assuntos
Microbioma Gastrointestinal , Esquizofrenia , Feminino , Gravidez , Humanos , Adulto Jovem , Adulto , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino , Esquizofrenia/microbiologia , Barreira Hematoencefálica , Dieta , Ácidos Graxos Voláteis
6.
Nutrients ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37892541

RESUMO

The gut microbiome is a diverse bacterial community in the human gastrointestinal tract that plays important roles in a variety of biological processes. Short-chain fatty acids (SCFA) are produced through fermentation of dietary fiber. Certain microbes in the gut are responsible for producing SCFAs such as acetate, propionate and butyrate. An imbalance in gut microbiome diversity can lead to metabolic disorders and inflammation-related diseases. Changes in SCFA levels and associated microbiota were observed in IBD, suggesting an association between SCFAs and disease. The gut microbiota and SCFAs affect reactive oxygen species (ROS) associated with IBD. Gut microbes and SCFAs are closely related to IBD, and it is important to study them further.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Ácidos Graxos Voláteis/metabolismo , Butiratos , Doenças Inflamatórias Intestinais/microbiologia
7.
Nutrients ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432213

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by lipid accumulation in hepatocytes with low alcohol consumption. The development of sterile inflammation, which occurs in response to a range of cellular stressors or injuries, has been identified as a major contributor to the pathogenesis of NAFLD. Recent studies of the pathogenesis of NAFLD reported the newly developed roles of damage-associated molecular patterns (DAMPs). These molecules activate pattern recognition receptors (PRRs), which are placed in the infiltrated neutrophils, dendritic cells, monocytes, or Kupffer cells. DAMPs cause the activation of PRRs, which triggers a number of immunological responses, including the generation of cytokines that promote inflammation and the localization of immune cells to the site of the damage. This review provides a comprehensive overview of the impact of DAMPs and PRRs on the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/etiologia , Células de Kupffer , Monócitos , Neutrófilos , Inflamação
8.
Sci Rep ; 13(1): 1495, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707670

RESUMO

Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Prognóstico
9.
Biochim Biophys Acta ; 1813(8): 1412-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21530592

RESUMO

Myogenic differentiation is an essential process for the myogenesis in response to various extracellular stimuli. p38 MAPK is a core signalling molecule in myogenic differentiation. The activation of p38 MAPK is required for myogenic differentiation; however, the mechanism for this activation remains undefined. ASK1 is a member of the MAP3K family that activates both JNK and p38 MAPK pathways in response to an array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. Here, we reported that TNFα was significantly released from H9c2 cardiac myoblast in differentiation medium. Furthermore, the oxidant H(2)O(2) acted as a messenger in the TNFα signalling pathway to disrupt the complex of ASK1-Trx, which was followed by the activation of ASK1 in cardiac myogenic differentiation. Subsequently, the activated ASK1 stimulated MKK3/6-p38MAPK signalling cascade to induce specific myogenic differentiation. In addition, exogenous TNFα added to the medium at physiological levels enhanced the ASK1-p38 MAPK signalling pathway through the increased generation of H(2)O(2). Interestingly, inhibition of p38 MAPK abrogated the production of H(2)O(2), suggesting that there might be a positive feedback loop in the myogenic-redox signalling pathway. These results indicate that ASK1 is a new intracellular regulator of activation of the p38 MAPK in cardiac myogenic differentiation.


Assuntos
MAP Quinase Quinase Quinase 5/metabolismo , Mioblastos Cardíacos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Retroalimentação Fisiológica , Peróxido de Hidrogênio/metabolismo , Sistema de Sinalização das MAP Quinases , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/efeitos dos fármacos , Oxirredução , Ratos , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Tiorredoxinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
Nutrients ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889939

RESUMO

The WHO's definition of health transcends the mere absence of disease, emphasizing physical, mental, and social well-being. As this perspective is being increasingly applied to the management of chronic diseases, research on gut microbiota (GM) is surging, with a focus on its potential for persistent and noninvasive dietary therapeutics. In patients with epilepsy (PWE), a chronic lack of seizure control along with often neglected psychiatric comorbidities greatly disrupt the quality of life. Evidence shows that GM-derived short chain fatty acids (SCFAs) may impact seizure susceptibility through modulating (1) excitatory/inhibitory neurotransmitters, (2) oxidative stress and neuroinflammation, and (3) psychosocial stress. These functions are also connected to shared pathologies of epilepsy and its two most common psychiatric consequences: depression and anxiety. As the enhancement of SCFA production is enabled through direct administration, as well as probiotics and prebiotics, related dietary treatments may exert antiseizure effects. This paper explores the potential roles of SCFAs in the context of seizure control and its mental comorbidities, while analyzing existing studies on the effects of pro/prebiotics on epilepsy. Based on currently available data, this study aims to interpret the role of SCFAs in epileptic treatment, extending beyond the absence of seizures to target the health of PWE.


Assuntos
Epilepsia , Probióticos , Ácidos Graxos Voláteis , Humanos , Neurotransmissores , Prebióticos , Probióticos/uso terapêutico , Qualidade de Vida , Convulsões
11.
Front Pharmacol ; 13: 845324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712705

RESUMO

Objective: Our previous studies showed an age-related increased prevalence of nasal polyps (NP) and reduced production of S100A8/9 in elderly patients with chronic rhinosinusitis with NP (CRSwNP). In this study, we investigated an unbiased age-related gene expression profile in CRSwNP subjects and healthy controls, and further identified the differences in their tissue remodeling. Methods: Microarrays using NP and uncinate tissues from health controls (elderly, age ≥65 vs. non-elderly, age 18-49) were performed, and differentially regulated genes were analyzed. Quantitative real-time PCR (qPCR), Immunostaining, Periodic acid-Schiff (PAS), trichrome staining, Western blot, and ELISA were performed for further investigation. Results: Microarrays identified differentially expressed genes according to disease and age; 278 in NP vs. controls, 75 in non-elderly NP vs. non-elderly controls, and 32 in elderly NP vs. elderly controls. qPCR confirmed that the PLAT gene was downregulated and the SERPINB2 gene upregulated in NP vs. controls. The serous glandular cell-derived antimicrobial protein/peptide-related genes such as BPIFB3, BPIFB2, LPO, and MUC7 were remarkably reduced in NP, regardless of age. SERPINE1 gene (plasminogen activator inhibitor-1, PAI-1) expression was significantly increased in elderly NP versus elderly controls. IHC and western blot confirmed significantly decreased production of MUC7 and LPO in NP versus controls. There was a trend of age-related reduction of submucosal gland cells in normal controls. Trichrome and immunofluorescence staining demonstrated an age-related increase of collagen and fibrin deposition in NP, consistent with increased PAI-1 production. Conclusion: This study demonstrated age-related differential glandular remodeling patterns and fibrosis in NP and normal controls. PAI-1 expression was significantly increased in elderly NP versus elderly controls, suggesting PAI-1 as a potential treatment target in elderly NP.

12.
Plants (Basel) ; 11(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235350

RESUMO

Particulate matters (PMs) from polluted air cause diverse pulmonary and cardiovascular diseases, including lung inflammation. While the fruits (Goji) of Lycium trees are commonly consumed as traditional medicine and functional food ingredients, the majority of their roots are discarded as by-products. To enhance the industrial applicability of Lycium roots, we prepared an ethanol extract (named GR30) of L. chinense Miller roots and evaluated its potential protective effects against particulate matter 10 (PM10)-induced inflammation and immune cell death. The GR30 treatment (0-500 µg/mL) significantly attenuated the PM10-induced cell cycle arrest, DNA fragmentation and mitochondria-dependent apoptosis in RBL-2H3 basophil cells. GR30 also significantly antagonized the PM10-induced expression of proinflammatory cytokines (IL-4, IL-13, and TNF-α) and COX2 expression through downregulation of MAPKs (ERK and JNK) signalling pathway. Oral administration of GR30 (200-400 mg/kg) to PM10 (20 mg/mL)-challenged mice significantly reduced the serum levels of IgE and the expression of TNF-α and Bax in lung tissues, which were elevated by PM10 exposure. These results revealed that the ethanolic extract (GR30) of L. chinense Miller roots exhibited anti-inflammatory and cyto-protective activity against PM10-induced inflammation and basophil cell death, and thus, it would be useful in functional food industries to ameliorate PM-mediated damage to respiratory and immune systems.

13.
Biofactors ; 48(5): 1036-1059, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36102254

RESUMO

Metabolic syndrome (MetS) is a common feature in obesity, comprising a cluster of abnormalities including abdominal fat accumulation, hyperglycemia, hyperinsulinemia, dyslipidemia, and hypertension, leading to diabetes and cardiovascular diseases (CVD). Intake of carbohydrates (CHO), particularly a sugary diet that rapidly increases blood glucose, triglycerides, and blood pressure levels is the predominant determining factor of MetS. Complex CHO, on the other hand, are a stable source of energy taking a longer time to digest. In particular, resistant starch (RS) or soluble fiber is an excellent source of prebiotics, which alter the gut microbial composition, which in turn improves metabolic control. Altering maternal CHO intake during pregnancy may result in the child developing MetS. Furthermore, lifestyle factors such as physical inactivity in combination with dietary habits may synergistically influence gene expression by modulating genetic and epigenetic regulators transforming childhood obesity into adolescent metabolic disorders. This review summarizes the common pathophysiology of MetS in connection with the nature of CHO, intrauterine nutrition, genetic predisposition, lifestyle factors, and advanced treatment approaches; it also emphasizes how dietary CHO may act as a key element in the pathogenesis and future therapeutic targets of obesity and MetS.


Assuntos
Síndrome Metabólica , Obesidade Infantil , Adolescente , Glicemia/metabolismo , Criança , Carboidratos da Dieta/efeitos adversos , Feminino , Humanos , Síndrome Metabólica/terapia , Obesidade Infantil/complicações , Prebióticos , Gravidez , Amido Resistente , Fatores de Risco , Triglicerídeos
14.
Biomed Pharmacother ; 156: 113764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228367

RESUMO

In the liver, reactive oxygen species (ROS) are constantly released during cellular metabolic processes, and excess ROS production can cause redox stress. The redox stress is both beneficial for and harmful to the survival of cells since it modulates the cellular redox control system. The redox control system is a series of cellular responses that are responsible for maintaining a balanced oxidation-reduction status. Many cellular processes including growth, proliferation, and senescence are sensitively regulated by the redox control system. Imbalance of redox induces redox stress and damages DNA, proteins, and lipids in cells, and further contributes to the pathogenesis of severe diseases and disorders like cancer. However, the cellular redox control system also utilizes redox stress-responsive pathways and increases antioxidant enzymes to aid cell survival. Therefore, a deeper understanding of the connection between the redox control system and liver disease is likely to pave the way for the future development of new therapeutic strategies. This review will examine the redox control systems in liver with responsive regulating molecules, current knowledge of the redox control system and liver disease, and suggest potential therapeutic targets for liver diseases.


Assuntos
Hepatopatias , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Hepatopatias/tratamento farmacológico , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo
15.
Cells ; 11(4)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35203301

RESUMO

Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients' overall survival and quality of life.


Assuntos
Neoplasias Ovarianas , Qualidade de Vida , Biomarcadores , Carcinoma Epitelial do Ovário , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Tecnologia
16.
Front Physiol ; 11: 569221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178040

RESUMO

Skeletal muscle differentiation is an essential process for the maintenance of muscle development and homeostasis. Reactive oxygen species (ROS) are critical signaling molecules involved in muscle differentiation. Palmitoyl protein thioesterase 1 (PPT1), a lysosomal enzyme, is involved in removing thioester-linked fatty acid groups from modified cysteine residues in proteins. However, the role of PPT1 in muscle differentiation remains to be elucidated. Here, we found that PPT1 plays a critical role in the differentiation of C2C12 skeletal myoblasts. The expression of PPT1 gradually increased in response to mitochondrial ROS (mtROS) during muscle differentiation, which was attenuated by treatment with antioxidants. Moreover, we revealed that PPT1 transactivation occurs through nuclear factor erythroid 2-regulated factor 2 (Nrf2) binding the antioxidant response element (ARE) in its promoter region. Knockdown of PPT1 with specific small interference RNA (siRNA) disrupted lysosomal function by increasing its pH. Subsequently, it caused excessive accumulation of autophagy flux, thereby impairing muscle fiber formation. In conclusion, we suggest that PPT1 is factor a responsible for myogenic autophagy in differentiating C2C12 myoblasts.

17.
Int Immunopharmacol ; 88: 106936, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871479

RESUMO

Emodin (Emo) is a natural plant anthraquinone derivative with a wide spectrum of pharmacological properties, including anticancer, antioxidant, and hepatoprotective activities. Glycosylation of natural anthraquinones with various sugar moieties can affect their physical, chemical, and biological functions. In this study, the potential immunomodulatory activities of Emo and its glycosylated derivative, emodin 8-O-glucoside (E8G), were evaluated and compared using murine macrophage RAW264.7 cells and human monocytic THP-1 cells. The results showed that E8G (20 µM) induced the secretion of TNF-α and IL-6 from RAW264.7 cells more effectively than unglycosylated Emo aglycone, by 4.9- and 1.6-fold, respectively, with no significant cytotoxicity in the concentration range tested (up to 20 µM). E8G (2.5-20 µM) significantly and dose-dependently induced inducible nitric oxide synthase (iNOS) expression by up to 3.2-fold compared to that of untreated control following a remarkable increase in nitric oxide (NO) production. E8G also significantly increased the expression of TLR-2 mRNA and the phosphorylation of MAPKs (JNK and p38). The activation and subsequent nuclear translocation of NF-κB was substantially enhanced upon treatment with E8G (2.5-20 µM). Moreover, E8G markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrated that E8G far more strongly stimulates the secretion of proinflammatory cytokines, such as TNF-α and IL-6, and NO production from macrophages through upregulation of the TLR-2/MAPK/NF-κB signalling pathway than its nonglycosylated form, Emo aglycone. These results suggest for the first time that E8G may represent a novel immunomodulator, enhancing the early innate immunity.


Assuntos
Antraquinonas/farmacologia , Glucosídeos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Células Jurkat , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Células THP-1 , Receptor 2 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Mol Ther Oncolytics ; 19: 47-56, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33024818

RESUMO

Cervical cancer is the fourth most common cancer in women worldwide. The current approaches still have limitations in predicting the therapy outcome of each individual because of cancer heterogeneity. The goal of this study was to establish a gene expression signature that could help when choosing the right therapeutic method for the treatment of advanced-stage cervical cancer. The 666 patients were collected from four independent datasets. The 70-gene expression signature was established using univariate Cox proportional hazard regression analysis. The 70-gene signature was significantly different between low- and high-risk groups in the training dataset (p = 4.24e-6) and in the combined three validation datasets (p = 4.37e-3). Treatment of advanced-stage cancer patients in the high-risk group with molecular-targeted therapy combined with chemoradiotherapy yielded a better survival rate than with only chemoradiotherapy (p = 0.0746). However, treatment of the patients in the low-risk group with the combined therapy resulted in significantly lower survival (p = 0.00283). Functional classification of 70 genes revealed involvement of the angiogenesis pathway, specifically phosphatidylinositol 3-kinase signaling (p = 0.040), extracellular matrix organization (p = 0.0452), and cell adhesion (p = 0.011). The 70-gene signature could predict the prognosis and indicate an optimal therapeutic modality in molecular-targeted therapy or chemotherapy for advanced-stage cervical cancer.

19.
J Microbiol Biotechnol ; 29(5): 704-712, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30982316

RESUMO

Although nanometric dead Lactobacillus plantarum has emerged as a potentially important modulator of immune responses, its underlying mechanism of action has not been fully understood. This study aimed to identify the detailed biochemical mechanism of immune modulation by micronized and heat-treated L. plantarum LM1004 (MHT-LM1004, <1 µm in size). MHT-LM1004 was prepared from L. plantarum LM1004 via culture in a specifically designed membrane bioreactor and heat treatment. MHT-LM1004 was shown to effectively induce the secretion of TNF-α and IL-6 and the mRNA expression of inducible nitric oxide synthase (iNOS). MHT-LM1004 enhanced the expression of TLR-2, phosphorylation of MAPKs (ERK), and nuclear translocation of NF-κB in a dose-dependent manner. Oral administration of MHT-LM1004 (4 × 109 or 4 × 1011 cells/kg mouse body weight) increased the splenocyte proliferation and serum cytokine levels. These results suggested that MHT-LM1004 effectively enhances early innate immunity by activating macrophages via the TLR-2/MAPK/NF-κB signalling pathway and that this pathway is one of the major routes in immune modulation by the Lactobacillus species.


Assuntos
Temperatura Alta , Lactobacillus plantarum/imunologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Citocinas/sangue , Citocinas/metabolismo , Feminino , Imunidade Inata , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/biossíntese , Células RAW 264.7 , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Cancers (Basel) ; 11(11)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703415

RESUMO

Pancreatic adenocarcinoma (PAC) is one of the most aggressive malignancies. Intratumoural molecular heterogeneity impedes improvement of the overall survival rate. Current pathological staging system is not sufficient to accurately predict prognostic outcomes. Thus, accurate prognostic model for patient survival and treatment decision is demanded. Using differentially expressed gene analysis between normal pancreas and PAC tissues, the cancer-specific genes were identified. A prognostic gene expression model was computed by LASSO regression analysis. The PAC-5 signature (LAMA3, E2F7, IFI44, SLC12A2, and LRIG1) that had significant prognostic value in the overall dataset was established, independently of the pathological stage. We provided evidence that the PAC-5 signature further refined the selection of the PAC patients who might benefit from postoperative therapies. SLC12A2 and LRIG1 interacted with the proteins that were implicated in resistance of EGFR kinase inhibitor. DNA methylation was significantly involved in the gene regulations of the PAC-5 signature. The PAC-5 signature provides new possibilities for improving the personalised therapeutic strategies. We suggest that the PAC-5 genes might be potential drug targets for PAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA