Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mol Cell ; 80(4): 592-606.e8, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33159855

RESUMO

Despite its outstanding clinical success, immune checkpoint blockade remains ineffective in many patients. Accordingly, combination therapy capable of achieving greater antitumor immunity is urgently required. Here, we report that limiting glutamine metabolism in cancer cells bolsters the effectiveness of anti-programmed death ligand-1 (PD-L1) antibody. Inhibition of glutamine utilization increased PD-L1 levels in cancer cells, thereby inactivating co-cultured T cells. Under glutamine-limited conditions, reduced cellular GSH levels caused an upregulation of PD-L1 expression by impairing SERCA activity, which activates the calcium/NF-κB signaling cascade. Consequently, in tumors grown in immunocompetent mice, inhibition of glutamine metabolism decreased the antitumor activity of T cells. In combination with anti-PD-L1, however, glutamine depletion strongly promoted the antitumor efficacy of T cells in vitro and in vivo due to simultaneous increases in Fas/CD95 levels. Our results demonstrate the relevance of cancer glutamine metabolism to antitumor immunity and suggest that co-targeting of glutamine metabolism and PD-L1 represents a promising therapeutic approach.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Neoplasias/imunologia , Neoplasias/prevenção & controle , Linfócitos T/imunologia , Idoso , Animais , Apoptose , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Inflamm Res ; 72(10-11): 1981-1997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770568

RESUMO

BACKGROUND: Classically activated M1 macrophages, characterized by aberrant glycolysis and secretion of inflammatory cytokines, play pivotal roles in inflammatory diseases, including inflammatory bowel disease (IBD). Recently, sodium-glucose co-transporter 2 (SGLT2) inhibitors were shown to suppress Na+/H+ exchanger 1 (NHE1) and Na+/Ca2+ exchanger 1 (NCX1) activity, regulating downstream intracellular Ca2+ concentrations in cardiomyocytes. However, whether SGLT2 inhibitors regulate M1 macrophage polarization by downregulating NHE1 and NCX1 remains unknown. METHODS: We analyzed cellular responses to SGLT2 inhibitors using mouse bone marrow-derived macrophages and peritoneal macrophages treated with lipopolysaccharide (LPS). To induce IBD, we used a dextran sulfate sodium salt-induced colitis mouse model. RESULTS: We observed that NHE1 and NCX1 were overexpressed in LPS-treated macrophages, leading to M1 macrophage polarization. Mechanistically, NHE1 and NCX1-mediated Ca2+ accumulation in the macrophage resulted in enhanced glycolysis by promoting PI3K/AKT/mTORC1 signaling. SGLT2 inhibitors suppressed both the expression levels and activities of NHE1 and NCX1, and consequently downregulated PI3K/AKT/mTORC1 signaling and glycolysis in LPS-treated macrophages. We observed inhibition of LPS-stimulated M1 polarization and cytokine production by SGLT2 inhibitors in vitro, ex vivo, and in an IBD mouse model. CONCLUSIONS: NHE1 promotes M1 macrophage polarization and SGLT2 inhibitors are a novel strategy to treat M1 macrophage-mediated inflammatory diseases, including IBD.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163619

RESUMO

Classically activated M1 macrophages reprogram their metabolism towards enhanced glycolysis to obtain energy and produce pro-inflammatory cytokines after activation by mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor (HIF)-1α. Thus, a strategy that constrains M1 polarization of macrophages via downregulation of glycolysis is essential for treating chronic inflammatory diseases. Cassiae semen has pharmacological activity against various inflammatory diseases. However, it is unclear whether specific compounds within Cassia seeds affect M1 polarization of macrophages. Here, we investigated whether Cassiaside C napthopyrone from Cassiae semen inhibits M1 polarization by downregulating glycolysis. We found that Cassiaside C reduced expression of inducible nitric oxide synthase and cyclooxygenase-2 and the phosphorylation of nuclear factor kappa B, all of which are upregulated in lipopolysaccharide (LPS)/interferon (IFN)-γ-treated Raw264.7 cells and peritoneal macrophages. Moreover, Cassiaside C-treated macrophages showed marked suppression of LPS/IFN-γ-induced HIF-1α, pyruvate dehydrogenase kinase 1, and lactate dehydrogenase A expression, along with downregulation of the phosphoinositide 3-kinases (PI3K)/AKT/mTORC1 signaling pathway. Consequently, Cassiaside C attenuated enhanced glycolysis and lactate production, but rescued diminished oxidative phosphorylation, in M1 polarized macrophages. Thus, Cassiaside C dampens M1 polarization of macrophages by downregulating glycolysis, which could be exploited as a therapeutic strategy for chronic inflammatory conditions.


Assuntos
Polaridade Celular , Glicólise , Glicosídeos , Ativação de Macrófagos , Macrófagos , Animais , Camundongos , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Transdução de Sinais , Polaridade Celular/efeitos dos fármacos , Glicosídeos/farmacologia
4.
Biochem Biophys Res Commun ; 560: 45-51, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33965788

RESUMO

Rapidly proliferating cells such as vascular smooth muscle cells (VSMCs) require metabolic programs to support increased energy and biomass production. Thus, targeting glutamine metabolism by inhibiting glutamine transport could be a promising strategy for vascular disorders such as atherosclerosis, stenosis, and restenosis. V-9302, a competitive antagonist targeting the glutamine transporter, has been investigated in the context of cancer; however, its role in VSMCs is unclear. Here, we examined the effects of blocking glutamine transport in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using V-9302. We found that V-9302 inhibited mTORC1 activity and mitochondrial respiration, thereby suppressing FBS- or PDGF-stimulated proliferation and migration of VSMCs. Moreover, V-9302 attenuated carotid artery ligation-induced neointima in mice. Collectively, the data suggest that targeting glutamine transport using V-9302 is a promising therapeutic strategy to ameliorate occlusive vascular disease.


Assuntos
Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Neointima/tratamento farmacológico , Sistema A de Transporte de Aminoácidos/antagonistas & inibidores , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Artérias Carótidas/cirurgia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Ligadura , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/etiologia , Neointima/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacologia
5.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988000

RESUMO

Oncogenic signals contribute to enhanced glycolysis and mTORC1 activity, leading to rapid cell proliferation in cancer. Regulation of glycolysis and mTORC1 by PI3K/Akt signaling is well established, but how KRAS-induced MEK signaling regulates these pathways remains poorly understood. Here, we report a role for MEK-driven lactate production in mTORC1 activation in KRAS-activated cells. KRAS/MEK-induced upregulation of the chicken ovalbumin upstream promoter transcriptional factor II (COUP-TFII) increases the expression of lactate dehydrogenase A (LDHA), resulting in lactate production and mTORC1 activation. Further, lactate inhibits the interaction of TSC2 and Rheb, leading to the cellular activation of mTORC1 irrespective of growth factor stimulation. These findings suggest that COUP-TFII is a novel oncogenic mediator, connecting KRAS signaling and glycolysis, and leading to mTORC1 activation and cellular growth.


Assuntos
Fator II de Transcrição COUP/metabolismo , Ácido Láctico/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Fator II de Transcrição COUP/genética , Linhagem Celular Tumoral , Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Modelos Biológicos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
6.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070527

RESUMO

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Glutamina/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Neointima/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Diazo-Oxo-Norleucina/análogos & derivados , Glutamina/metabolismo , Imuno-Histoquímica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacologia
7.
Telemed J E Health ; 24(8): 604-613, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29341843

RESUMO

BACKGROUND: This study was performed to determine the effectiveness of the Smart Care service on glucose control based on telemedicine and telemonitoring compared with conventional treatment in patients with type 2 diabetes. MATERIALS AND METHODS: This 24-week prospective multi-center randomized controlled trial involved 338 adult patients with type 2 diabetes at four university hospitals in South Korea. The patients were randomly assigned to a control group (group A, n = 113), a telemonitoring group (group B, n = 113), or a telemedicine group (group C, n = 112). Patients in the telemonitoring group visited the outpatient clinic regularly, accompanied by an additional telemonitoring service that included remote glucose monitoring with automated patient decision support by text. Remote glucose monitoring was identical in the telemedicine group, but assessment by outpatient visits was replaced by video conferencing with an endocrinologist. RESULTS: The adjusted net reductions in HbA1c concentration after 24 weeks were similar in the conventional, telemonitoring, and telemedicine groups (-0.66% ± 1.03% vs. -0.66% ± 1.09% vs. -0.81% ± 1.05%; p > 0.05 for each pairwise comparison). Fasting glucose concentrations were lower in the telemonitoring and telemedicine groups than in the conventional group. Rates of hypoglycemia were lower in the telemedicine group than in the other two groups, and compliance with medication was better in the telemonitoring and telemedicine than in the conventional group. No serious adverse events were associated with telemedicine. CONCLUSIONS: Telehealthcare was as effective as conventional care at improving glycemia in patients with type 2 diabetes without serious adverse effects.


Assuntos
Automonitorização da Glicemia/métodos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Hemoglobinas Glicadas/análise , Telemedicina/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
8.
Hepatology ; 61(3): 953-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25346526

RESUMO

UNLABELLED: The metabolism of glutamine and glucose is recognized as a promising therapeutic target for the treatment of cancer; however, targeted molecules that mediate glutamine and glucose metabolism in cancer cells have not been addressed. Here, we show that restricting the supply of glutamine in hepatoma cells, including HepG2 and Hep3B cells, markedly increased the expression of retinoic acid-related orphan receptor alpha (RORα). Up-regulation of RORα in glutamine-deficient hepatoma cells resulted from an increase in the level of cellular reactive oxygen species and in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate reduced (NADP+ /NADPH) ratio, which was consistent with a reduction in the glutathione/glutathione disulfide (GSH/GSSG) ratio. Adenovirus (Ad)-mediated overexpression of RORα (Ad-RORα) or treatment with the RORα activator, SR1078, reduced aerobic glycolysis and down-regulated biosynthetic pathways in hepatoma cells. Ad-RORα and SR1078 reduced the expression of pyruvate dehydrogenase kinase 2 (PDK2) and inhibited the phosphorylation of pyruvate dehydrogenase and subsequently shifted pyruvate to complete oxidation. The RORα-mediated decrease in PDK2 levels was caused by up-regulation of p21, rather than p53. Furthermore, RORα inhibited hepatoma growth both in vitro and in a xenograft model in vivo. We also found that suppression of PDK2 inhibited hepatoma growth in a xenograft model. These findings mimic the altered glucose utilization and hepatoma growth caused by glutamine deprivation. Finally, tumor tissue from 187 hepatocellular carcinoma patients expressed lower levels of RORα than adjacent nontumor tissue, supporting a potential beneficial effect of RORα activation in the treatment of liver cancer. CONCLUSION: RORα mediates reprogramming of glucose metabolism in hepatoma cells in response to glutamine deficiency. The relationships established here between glutamine metabolism, RORα expression and signaling, and aerobic glycolysis have implications for therapeutic targeting of liver cancer metabolism.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glucose/metabolismo , Glutamina/deficiência , Neoplasias Hepáticas/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Trifosfato de Adenosina/biossíntese , Adulto , Idoso , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Feminino , Glicólise , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteína Supressora de Tumor p53/fisiologia
9.
Arterioscler Thromb Vasc Biol ; 35(11): 2384-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26404484

RESUMO

OBJECTIVE: Vascular calcification which refers to ectopic mineralization in vascular cells is associated with several conditions, such as chronic kidney disease, atherosclerosis, and diabetes mellitus. Estrogen-related receptor (ERR)γ is a member of the orphan nuclear receptor superfamily, which plays diverse roles in regulating homeostatic and metabolic processes. However, the role of ERRγ in vascular calcification has not been investigated to date. The aim of the present study was to examine the role of ERRγ in vascular calcification. APPROACH AND RESULTS: Vascular calcification was induced by treating rat aortic vascular smooth muscle cells with calcification medium. ERRγ expression in vascular smooth muscle cells was induced during calcification medium-induced vascular calcification. Adenovirus-mediated overexpression of ERRγ in vascular smooth muscle cells resulted in the upregulation of the expression of osteogenic genes, including runt-related transcription factor 2, osteopontin, and Msx2, and the downregulation of α-smooth muscle actin. Adenovirus-mediated overexpression of ERRγ induced bone morphogenetic protein 2 (BMP2) expression, leading to increased phosphorylation of the intracellular BMP2 effector proteins SMAD1/5/8. Collectively, these data suggested that ERRγ promotes dedifferentiation of vascular smooth muscle cells to an osteogenic phenotype during the vascular calcification process. Inhibition of endogenous ERRγ expression or activity using a specific siRNA or the selective inverse agonist GSK5182 attenuated vascular calcification and osteogenic gene expression in vitro and in vivo. CONCLUSIONS: The present results indicate that ERRγ plays a key role in vascular calcification by upregulating the BMP2 signaling pathway, suggesting that inhibition of ERRγ is a potential therapeutic strategy for the prevention of vascular calcification.


Assuntos
Doenças da Aorta/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese , Receptores de Estrogênio/metabolismo , Calcificação Vascular/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Sítios de Ligação , Proteína Morfogenética Óssea 2/genética , Desdiferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Regiões Promotoras Genéticas , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Transdução de Sinais , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Fatores de Tempo , Transfecção , Regulação para Cima , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
10.
Liver Int ; 35(10): 2233-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25976932

RESUMO

BACKGROUND & AIMS: An atypical orphan nuclear receptor small heterodimer partner (SHP) is known to be regulated by AMP-activated protein kinase (AMPK). Both of them inhibit TGF-ß and Smad signalling and exhibit antifibrotic activity in the liver. However, little is known about the protective effects of SHP and AMPK against hepatitis c virus (HCV)-induced hepatic fibrosis. METHODS: Levels of SHP, p-AMPK and fibrotic markers in HCV-infected human liver and in Huh-7.5 cells infected with HCV genotype 2a (JFH-1) were investigated. The effect of adenovirus-mediated overexpression of SHP (Ad-SHP) and AMPK activation via metformin and 5-amino-1-b-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) on fibrotic gene expression was evaluated in HCV-infected cells. Finally, we examined the effect of Ad-SHP and AMPK activators on invasion and activation of LX2 human HSCs induced by conditioned media from HCV-infected hepatocyte (CM). RESULTS: In HCV-infected human livers and Huh-7.5 cells infected with HCV, SHP mRNA and protein levels were diminished compared with controls, whereas profibrotic factors were increased. Pharmacological AMPK activation recovered SHP expression, and Ad-SHP inhibited HCV-induced fibrotic gene expression. This finding was accompanied by inhibition of HCV-stimulated nuclear factor-kappa B, an inducer of TGF-ß. Moreover, CytoSelect invasion assay revealed that enhanced activity and invasiveness of hepatic stellate cells induced by CM. CONCLUSION: These results demonstrate that overexpression of SHP and activation of AMPK reverses profibrogenic features of HCV-infected cells by decreasing TGF-ß and fibrotic gene expression. These findings provide a rationale for SHP as a possible therapeutic target against HCV-induced hepatic fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cirrose Hepática/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Linhagem Celular Tumoral , Gluconeogênese/efeitos dos fármacos , Hepacivirus , Células Estreladas do Fígado/metabolismo , Humanos , Metformina/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
11.
Biomedicines ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540172

RESUMO

Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.

12.
Exp Mol Med ; 56(5): 1123-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689086

RESUMO

Tumor-associated macrophages (TAMs) are vital contributors to the growth, metastasis, and therapeutic resistance of various cancers, including hepatocellular carcinoma (HCC). However, the exact phenotype of TAMs and the mechanisms underlying their modulation for therapeutic purposes have not been determined. Here, we present compelling evidence that glutamine-derived aspartate in TAMs stimulates spermidine production through the polyamine synthesis pathway, thereby increasing the translation efficiency of HIF-1α via eIF5A hypusination. Consequently, augmented translation of HIF-1α drives TAMs to undergo an increase glycolysis and acquire a metabolic phenotype distinct from that of M2 macrophages. Finally, eIF5A levels in tumor stromal lesions were greater than those in nontumor stromal lesions. Additionally, a higher degree of tumor stromal eIF5A hypusination was significantly associated with a more advanced tumor stage. Taken together, these data highlight the potential of inhibiting hypusinated eIF5A by targeting glutamine metabolism in TAMs, thereby opening a promising avenue for the development of novel therapeutic approaches for HCC.


Assuntos
Ácido Aspártico , Carcinoma Hepatocelular , Fator de Iniciação de Tradução Eucariótico 5A , Glutamina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Macrófagos Associados a Tumor , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Glutamina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Biossíntese de Proteínas , Animais , Linhagem Celular Tumoral , Camundongos , Glicólise , Lisina/análogos & derivados
13.
Research (Wash D C) ; 7: 0365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654733

RESUMO

Neutrophils are primed for neutrophil extracellular trap (NET) formation during diabetes, and excessive NET formation from primed neutrophils compromises wound healing in patients with diabetes. Here, we demonstrate that trained immunity mediates diabetes-induced NET priming in neutrophils. Under diabetic conditions, neutrophils exhibit robust metabolic reprogramming comprising enhanced glycolysis via the pentose phosphate pathway and fatty acid oxidation, which result in the accumulation of acetyl-coenzyme A. Adenosine 5'-triphosphate-citrate lyase-mediated accumulation of acetyl-coenzyme A and histone acetyltransferases further induce the acetylation of lysine residues on histone 3 (AcH3K9, AcH3K14, and AcH3K27) and histone 4 (AcH4K8). The pharmacological inhibition of adenosine 5'-triphosphate-citrate lyase and histone acetyltransferases completely inhibited high-glucose-induced NET priming. The trained immunity of neutrophils was further confirmed in neutrophils isolated from patients with diabetes. Our findings suggest that trained immunity mediates functional changes in neutrophils in diabetic environments, and targeting neutrophil-trained immunity may be a potential therapeutic target for controlling inflammatory complications of diabetes.

14.
Exp Mol Med ; 55(4): 706-715, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37009798

RESUMO

Proliferating cancer cells rely largely on glutamine for survival and proliferation. Glutamine serves as a carbon source for the synthesis of lipids and metabolites via the TCA cycle, as well as a source of nitrogen for amino acid and nucleotide synthesis. To date, many studies have explored the role of glutamine metabolism in cancer, thereby providing a scientific rationale for targeting glutamine metabolism for cancer treatment. In this review, we summarize the mechanism(s) involved at each step of glutamine metabolism, from glutamine transporters to redox homeostasis, and highlight areas that can be exploited for clinical cancer treatment. Furthermore, we discuss the mechanisms underlying cancer cell resistance to agents that target glutamine metabolism, as well as strategies for overcoming these mechanisms. Finally, we discuss the effects of glutamine blockade on the tumor microenvironment and explore strategies to maximize the utility of glutamine blockers as a cancer treatment.


Assuntos
Glutamina , Neoplasias , Humanos , Glutamina/metabolismo , Neoplasias/metabolismo , Aminoácidos/metabolismo , Ciclo do Ácido Cítrico , Oxirredução , Microambiente Tumoral
15.
Diabetes Metab J ; 47(3): 426-436, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872065

RESUMO

BACKGROUND: The Chinese visceral adiposity index (CVAI) and new visceral adiposity index (NVAI) are novel indices of visceral adiposity used to predict metabolic and cardiovascular diseases in Asian populations. However, the relationships of CVAI and NVAI with chronic kidney disease (CKD) have not been investigated. We aimed to characterize the relationships of CVAI and NVAI with the prevalence of CKD in Korean adults. METHODS: A total of 14,068 participants in the 7th Korea National Health and Nutrition Examination Survey (6,182 men and 7,886 women) were included. Receiver operating characteristic (ROC) analyses were employed to compare the associations between indices of adiposity and CKD, and a logistic regression model was used to characterize the relationships of CVAI and NVAI with CKD prevalence. RESULTS: The areas under the ROC curves for CVAI and NVAI were significantly larger than for the other indices, including the visceral adiposity index and lipid accumulation product, in both men and women (all P<0.001). In addition, high CVAI or NVAI was significantly associated with a high CKD prevalence in both men (odds ratio [OR], 2.14; 95% confidence interval [CI], 1.31 to 3.48 in CVAI and OR, 6.47; 95% CI, 2.91 to 14.38 in NVAI, P<0.05) and women (OR, 4.87; 95% CI, 1.85 to 12.79 in CVAI and OR, 3.03; 95% CI, 1.35 to 6.82 in NVAI, P<0.05); this association remained significant after adjustment for multiple confounding factors in men and women. CONCLUSION: CVAI and NVAI are positively associated with CKD prevalence in a Korean population. CVAI and NVAI may be useful for the identification of CKD in Asian populations, including in Korea.


Assuntos
Adiposidade , Insuficiência Renal Crônica , Masculino , Humanos , Adulto , Feminino , Inquéritos Nutricionais , Povo Asiático , Obesidade Abdominal/complicações , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/complicações , República da Coreia/epidemiologia
16.
Cell Biosci ; 13(1): 69, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998073

RESUMO

BACKGROUND: N-methyl-D-aspartate receptors (NMDARs) are considered to be involved in several physiological and pathophysiological processes in addition to the progression of neurological disorders. However, how NMDARs are involved in the glycolytic phenotype of M1 macrophage polarization and the possibility of using them as a bio-imaging probe for macrophage-mediated inflammation remain unclear. METHODS: We analyzed cellular responses to NMDAR antagonism and small interfering RNAs using mouse bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS). An NMDAR targeting imaging probe, N-TIP, was produced via the introduction of NMDAR antibody and the infrared fluorescent dye FSD Fluor™ 647. N-TIP binding efficiency was tested in intact and LPS-stimulated BMDMs. N-TIP was intravenously administered to mice with carrageenan (CG)- and LPS-induced paw edema, and in vivo fluorescence imaging was conducted. The anti-inflammatory effects of dexamethasone were evaluated using the N-TIP-mediated macrophage imaging technique. RESULTS: NMDARs were overexpressed in LPS-treated macrophages, subsequently inducing M1 macrophage polarization. Mechanistically, NMDAR-mediated Ca2+ accumulation resulted in LPS-stimulated glycolysis via upregulation of PI3K/AKT/mTORC1 signaling. In vivo fluorescence imaging with N-TIP showed LPS- and CG-induced inflamed lesions at 5 h post-inflammation, and the inflamed lesions could be detected until 24 h. Furthermore, our N-TIP-mediated macrophage imaging technique helped successfully visualize the anti-inflammatory effects of dexamethasone in mice with inflammation. CONCLUSION: This study demonstrates that NMDAR-mediated glycolysis plays a critical role in M1 macrophage-related inflammation. Moreover, our results suggest that NMDAR targeting imaging probe may be useful in research on inflammatory response in vivo.

17.
BMB Rep ; 55(9): 459-464, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35651333

RESUMO

Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer. [BMB Reports 2022; 55(9): 459-464].


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melatonina , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Glicólise , Humanos , Neoplasias Hepáticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Respiração
18.
J Exp Clin Cancer Res ; 41(1): 98, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287706

RESUMO

BACKGROUND: Macropinocytosis, an important nutrient-scavenging pathway in certain cancer cells, allows cells to compensate for intracellular amino acid deficiency under nutrient-poor conditions. Ferroptosis caused by cysteine depletion plays a pivotal role in sorafenib responses during hepatocellular carcinoma (HCC) therapy. However, it is not known whether macropinocytosis functions as an alternative pathway to acquire cysteine in sorafenib-treated HCC, and whether it subsequently mitigates sorafenib-induced ferroptosis. This study aimed to investigate whether sorafenib drives macropinocytosis induction, and how macropinocytosis confers ferroptosis resistance on HCC cells. METHODS: Macropinocytosis, both in HCC cells and HCC tissues, was evaluated by measuring TMR-dextran uptake or lysosomal degradation of DQ-BSA, and ferroptosis was evaluated via C11-BODIPY fluorescence and 4-HNE staining. Sorafenib-induced ferroptosis and macropinocytosis were validated in tumor tissues taken from HCC patients who underwent ultrasound-guided needle biopsy. RESULTS: Sorafenib increased macropinocytosis in human HCC specimens and xenografted HCC tissues. Sorafenib-induced mitochondrial dysfunction was responsible for activation of PI3K-RAC1-PAK1 signaling, and amplified macropinocytosis in HCC. Importantly, macropinocytosis prevented sorafenib-induced ferroptosis by replenishing intracellular cysteine that was depleted by sorafenib treatment; this rendered HCC cells resistant to sorafenib. Finally, inhibition of macropinocytosis by amiloride markedly enhanced the anti-tumor effect of sorafenib, and sensitized resistant tumors to sorafenib. CONCLUSION: In summary, sorafenib induced macropinocytosis, which conferred drug resistance by mitigating sorafenib-induced ferroptosis. Thus, targeting macropinocytosis is a promising therapeutic strategy to facilitate ferroptosis-based therapy for HCC.


Assuntos
Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/tratamento farmacológico , Cisteína/uso terapêutico , Ferroptose/efeitos dos fármacos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/tratamento farmacológico , Pinocitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Carcinoma Hepatocelular/patologia , Cisteína/farmacologia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia
19.
Endocrinol Metab (Seoul) ; 37(5): 800-809, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36168774

RESUMO

BACKGRUOUND: Excessive proliferation and migration of vascular smooth muscle cells (VSMCs), which contributes to the development of occlusive vascular diseases, requires elevated mitochondrial oxidative phosphorylation to meet the increased requirements for energy and anabolic precursors. Therefore, therapeutic strategies based on blockade of mitochondrial oxidative phosphorylation are considered promising for treatment of occlusive vascular diseases. Here, we investigated whether DN200434, an orally available estrogen receptor-related gamma inverse agonist, inhibits proliferation and migration of VSMCs and neointima formation by suppressing mitochondrial oxidative phosphorylation. METHODS: VSMCs were isolated from the thoracic aortas of 4-week-old Sprague-Dawley rats. Oxidative phosphorylation and the cell cycle were analyzed in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using a Seahorse XF-24 analyzer and flow cytometry, respectively. A model of neointimal hyperplasia was generated by ligating the left common carotid artery in male C57BL/6J mice. RESULTS: DN200434 inhibited mitochondrial respiration and mammalian target of rapamycin complex 1 activity and consequently suppressed FBS- or PDGF-stimulated proliferation and migration of VSMCs and cell cycle progression. Furthermore, DN200434 reduced carotid artery ligation-induced neointima formation in mice. CONCLUSION: Our data suggest that DN200434 is a therapeutic option to prevent the progression of atherosclerosis.


Assuntos
Aterosclerose , Neointima , Ratos , Camundongos , Masculino , Animais , Neointima/prevenção & controle , Neointima/tratamento farmacológico , Neointima/metabolismo , Músculo Liso Vascular/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Ratos Sprague-Dawley , Células Cultivadas , Artéria Carótida Primitiva/metabolismo , Artérias Carótidas/cirurgia , Artérias Carótidas/metabolismo , Mamíferos
20.
BMB Rep ; 55(11): 547-552, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36016501

RESUMO

Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, induces ferroptosis in hepatocellular carcinoma (HCC) cells. Several pathways that mitigate sorafenib-induced ferroptosis confer drug resistance; thus strategies that enhance ferroptosis increase sorafenib efficacy. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated in human HCC tissues and plays a role in cancer cell proliferation. The aim of this study was to determine whether inhibition of ERRγ with DN200434, an orally available inverse agonist, can overcome resistance to sorafenib through induction of ferroptosis. Sorafenib-resistant HCC cells were less sensitive to sorafenibinduced ferroptosis and showed significantly higher ERRγ levels than sorafenib-sensitive HCC cells. DN200434 induced lipid peroxidation and ferroptosis in sorafenib-resistant HCC cells. Mechanistically, DN200434 increased mitochondrial ROS generation by reducing glutathione/glutathione disulfide levels, which subsequently reduced mTOR activity and GPX4 levels. DN200434 induced amplification of the antitumor effects of sorafenib was confirmed in a tumor xenograft model. The present results indicate that DN200434 may be a novel therapeutic strategy to re-sensitize HCC cells to sorafenib. [BMB Reports 2022; 55(11): 547-552].


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/metabolismo , Estrogênios , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA