Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047062

RESUMO

Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although previous study demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), the mechanisms of H.E. treatment on the neuroinflammatory response, neurotransmission, and related metabolites remain largely unknown. We demonstrated that 3-AP rats treated with 25 mg/kg H.E. extracts had improved motor coordination and balance in the accelerated rotarod and rod tests. We showed that the H.E. treatment upregulated the expression of Tgfb1, Tgfb2, and Smad3 genes to levels comparable to those in the non-3-AP control group. Interestingly, we also observed a significant correlation between Tgfb2 gene expression and rod test performance in the 3-AP saline group, but not in the non-3-AP control or H.E.+3-AP groups, indicating a relationship between Tgfb2 gene expression and motor balance in the 3-AP rat model. Additionally, we also found that the H.E. treatment increased mitochondrial COX-IV protein expression and normalized dopamine-serotonin neurotransmission and metabolite levels in the cerebellum of the H.E.+3-AP group compared to the 3-AP saline group. In conclusion, our findings suggest that the H.E. treatment improved motor function in the 3-AP rat model, which was potentially mediated through neuroprotective mechanisms involving TGFB2-Smad3 signaling via normalization of neurotransmission and metabolic pathways.


Assuntos
Ataxia Cerebelar , Ratos , Animais , Ataxia Cerebelar/tratamento farmacológico , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Hericium , Modelos Animais de Doenças , Anti-Inflamatórios/uso terapêutico
2.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881712

RESUMO

Depression is a common and severe neuropsychiatric disorder that is one of the leading causes of global disease burden. Although various anti-depressants are currently available, their efficacies are barely adequate and many have side effects. Hericium erinaceus, also known as Lion's mane mushroom, has been shown to have various health benefits, including antioxidative, antidiabetic, anticancer, anti-inflammatory, antimicrobial, antihyperglycemic, and hypolipidemic effects. It has been used to treat cognitive impairment, Parkinson's disease, and Alzheimer's disease. Bioactive compounds extracted from the mycelia and fruiting bodies of H. erinaceus have been found to promote the expression of neurotrophic factors that are associated with cell proliferation such as nerve growth factors. Although antidepressant effects of H. erinaceus have not been validated and compared to the conventional antidepressants, based on the neurotrophic and neurogenic pathophysiology of depression, H. erinaceus may be a potential alternative medicine for the treatment of depression. This article critically reviews the current literature on the potential benefits of H. erinaceus as a treatment for depressive disorder as well as its mechanisms underlying the antidepressant-like activities.


Assuntos
Basidiomycota/química , Produtos Biológicos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Basidiomycota/metabolismo , Produtos Biológicos/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Transtorno Depressivo/patologia , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/uso terapêutico , Humanos , Indóis/química , Indóis/isolamento & purificação , Indóis/uso terapêutico , Micélio/química , Micélio/metabolismo , Fatores de Crescimento Neural/metabolismo
3.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35745683

RESUMO

Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.

4.
Chin Med ; 16(1): 132, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876186

RESUMO

BACKGROUND: Depression is a severe neuropsychiatric disorder that affects more than 264 million people worldwide. The efficacy of conventional antidepressants are barely adequate and many have side effects. Hericium erinaceus (HE) is a medicinal mushroom that has been reported to have therapeutic potential for treating depression. METHODS: Animals subjected to chronic restraint stress were given 4 weeks HE treatment. Animals were then screened for anxiety and depressive-like behaviours. Gene and protein assays, as well as histological analysis were performed to probe the role of neurogenesis in mediating the therapeutic effect of HE. Temozolomide was administered to validate the neurogenesis-dependent mechanism of HE. RESULTS: The results showed that 4 weeks of HE treatment ameliorated depressive-like behaviours in mice subjected to 14 days of restraint stress. Further molecular assays demonstrated the 4-week HE treatment elevated the expression of several neurogenesis-related genes and proteins, including doublecortin, nestin, synaptophysin, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphorylated extracellular signal-regulated kinase, and phosphorylated cAMP response element-binding protein (pCREB). Increased bromodeoxyuridine-positive cells were also observed in the dentate gyrus of the hippocampus, indicating enhanced neurogenesis. Neurogenesis blocker temozolomide completely abolished the antidepressant-like effects of HE, confirming a neurogenesis-dependent mechanism. Moreover, HE induced anti-neuroinflammatory effects through reducing astrocyte activation in the hippocampus, which was also abolished with temozolomide administration. CONCLUSION: HE exerts antidepressant effects by promoting neurogenesis and reducing neuroinflammation through enhancing the BDNF-TrkB-CREB signalling pathway.

5.
Sci Rep ; 10(1): 14945, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913245

RESUMO

Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although several studies have demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), its mechanisms in cerebellar ataxia remain largely unknown. Here, we investigated the neuroprotective effects of H.E. treatment in an animal model of 3-acetylpyridine (3-AP)-induced cerebellar ataxia. Animals administered 3-AP injection exhibited remarkable impairments in motor coordination and balance. There were no significant effects of 25 mg/kg H.E. on the 3-AP treatment group compared to the 3-AP saline group. Interestingly, there was also no significant difference in the 3-AP treatment group compared to the non-3-AP control, indicating a potential rescue of motor deficits. Our results revealed that 25 mg/kg H.E. normalised the neuroplasticity-related gene expression to the level of non-3-AP control. These findings were further supported by increased protein expressions of pERK1/2-pCREB-PSD95 as well as neuroprotective effects on cerebellar Purkinje cells in the 3-AP treatment group compared to the 3-AP saline group. In conclusion, our findings suggest that H.E. potentially rescued behavioural motor deficits through the neuroprotective mechanisms of ERK-CREB-PSD95 in an animal model of 3-AP-induced cerebellar ataxia.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ataxia Cerebelar/tratamento farmacológico , Hericium/crescimento & desenvolvimento , Transtornos Motores/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Piridinas/toxicidade , Animais , Ataxia Cerebelar/induzido quimicamente , Ataxia Cerebelar/psicologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hericium/química , Masculino , Transtornos Motores/genética , Transtornos Motores/metabolismo , Transtornos Motores/patologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Ratos , Ratos Sprague-Dawley
6.
Acta Histochem ; 121(8): 151437, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31492421

RESUMO

Neuronal NOS (nNOS) accounts for most of the NO production in the nervous system that modulates synaptic transmission and neuroplasticity. Although previous studies have selectively described the localisation of nNOS in specific brain regions, a comprehensive distribution profile of nNOS in the brain is lacking. Here we provided a detailed morphological characterization on the rostro-caudal distribution of neurons and fibres exhibiting positive nNOS-immunoreactivity in adult Sprague-Dawley rat brain. Our results demonstrated that neurons and fibres in the brain regions that exhibited high nNOS immunoreactivity include the olfactory-related areas, intermediate endopiriform nucleus, Islands of Calleja, subfornical organ, ventral lateral geniculate nucleus, parafascicular thalamic nucleus, superior colliculus, lateral terminal nucleus, pedunculopontine tegmental nucleus, periaqueductal gray, dorsal raphe nucleus, supragenual nucleus, nucleus of the trapezoid body, and the cerebellum. Moderate nNOS immunoreactivity was detected in the cerebral cortex, caudate putamen, hippocampus, thalamus, hypothalamus, amygdala, and the spinal cord. Finally, low NOS immunoreactivity were found in the corpus callosum, fornix, globus pallidus, anterior commissure, and the dorsal hippocampal commissure. In conclusion, this study provides a comprehensive view of the morphology and localisation of nNOS immunoreactivity in the brain that would contribute to a better understanding of the role played by nNOS in the brain.


Assuntos
Encéfalo/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Encéfalo/citologia , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA