Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Environ Sci Technol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012227

RESUMO

The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.

2.
Biofouling ; 36(4): 369-377, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32423321

RESUMO

Various quorum quenching (QQ) media have been developed to mitigate membrane biofouling in a membrane bioreactor (MBR). However, most are expensive, unstable and easily trapped in hollow fibre membranes. Here, a sol-gel method was used to develop a mesoporous silica medium entrapping a QQ bacterial strain (Rhodococcus sp. BH4). The new silica QQ medium was able to remove quorum sensing signalling molecules via both adsorption (owing to their mesoporous hydrophobic structure) and decomposition with an enzyme (lactonase), preventing MBR biofouling without affecting the water quality. It also demonstrated a relatively long life span due to its non-biodegradability and its relatively small particle size (<1.0 mm), which makes it less likely to clog in a hollow fibre membrane module.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Incrustação Biológica , Membranas , Membranas Artificiais , Percepção de Quorum , Dióxido de Silício , Purificação da Água
3.
Biofouling ; 35(4): 443-453, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31088168

RESUMO

Lab-scale membrane bioreactors (MBRs) were investigated at 12, 18, and 25 °C to identify the correlation between quorum sensing (QS) and biofouling at different temperatures. The lower the reactor temperature, the more severe the membrane biofouling measured in terms of the transmembrane pressure (TMP) during filtration. More extracellular polymeric substances (EPSs) that cause biofouling were produced at 18 °C than at 25 °C, particularly polysaccharides, closely associated with QS via the production of N-acyl homoserine lactone (AHL). However, at 12 °C, AHL production decreased, but the release of EPSs due to deflocculation increased the soluble EPS concentration. To confirm the temperature effect related to QS, bacteria producing AHL were isolated from MBR sludge and identified as Aeromonas sp., Leclercia sp., and Enterobacter sp. through a 16S rDNA sequencing analysis. Batch assays at 18 and 25 °C showed that there was a positive correlation between QS through AHL and biofilm formation in that temperature range.


Assuntos
Incrustação Biológica , Reatores Biológicos , Percepção de Quorum , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Reatores Biológicos/microbiologia , Filtração , Esgotos/microbiologia , Temperatura
4.
Environ Sci Technol ; 52(11): 6237-6245, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29714471

RESUMO

Bacterial quorum quenching (QQ) by means of degrading signaling molecules has been applied to antibiofouling strategies in a membrane bioreactor (MBR) for wastewater treatment. However, the target signaling molecules have been limited to N-acyl homoserine lactones participating in intraspecies quorum sensing. Here, an approach to disrupting autoinducer-2 (AI-2) signaling molecules participating in interspecies quorum sensing was pursued as a next-generation antibiofouling strategy in an MBR for wastewater treatment. We isolated an indigenous QQ bacterium ( Acinetobacter sp. DKY-1) that can attenuate the expression of the quorum-sensing (QS) response through the inactivation of an autoinducer-2 signaling molecule, 4,5-dihydroxy-2,3-pentanedione (DPD), among four kinds of autoinducer-2 QS bacteria. DKY-1 released AI-2 QQ compounds, which were verified to be hydrophilic with a molecular weight of <400 Da. The addition of DKY-1 entrapping beads into an MBR significantly decreased DPD concentration and remarkably reduced membrane biofouling. This new approach, combining molecular biology with wastewater engineering, could enlarge the range of QQ-MBR for antibiofouling and energy savings in the field of wastewater treatment.


Assuntos
Acinetobacter , Incrustação Biológica , Bactérias , Reatores Biológicos , Percepção de Quorum , Águas Residuárias
5.
Biofouling ; 34(8): 912-924, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30369244

RESUMO

In this study, the seasonality of the biofouling behavior of pilot-scale membrane bioreactors (MBRs) run in parallel with vacant sheets and quorum quenching (QQ) sheets using real municipal wastewater was investigated. QQ media delayed fouling, but low temperatures caused severe biofouling. The greater amount of extracellular polymeric substances (EPSs) produced in cold weather was responsible for the faster biofouling of a membrane, even with QQ media. There were significant negative relationships between EPS levels and water temperature. Cold weather was detrimental to the degradation of quorum sensing signal molecules by QQ sheets, whose activity was restored with a higher dose of QQ bacteria. The QQ bacteria in the sheets experienced a slight loss in activity during the early stage of the field test, but survived in the pilot-scale MBR fed with real wastewater. There were no significant discrepancies in treatment efficiency among conventional, vacant, and QQ MBRs.


Assuntos
Incrustação Biológica , Reatores Biológicos/microbiologia , Temperatura Baixa , Membranas Artificiais , Percepção de Quorum , Bactérias/metabolismo , Projetos Piloto , Águas Residuárias/microbiologia
6.
Environ Sci Technol ; 50(16): 8596-604, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27415662

RESUMO

Recently, membrane bioreactors (MBRs) with quorum quenching (QQ) bacteria entrapping beads have been reported as a new paradigm in biofouling control because, unlike conventional post-biofilm control methods, bacterial QQ can inhibit biofilm formation through its combined effects of physical scouring of the membrane and inhibition of quorum sensing (QS). In this study, using a special reporter strain (Escherichia coli JB525), the interaction between QS signal molecules and quorum quenching bacteria entrapping beads (QQ-beads) was elucidated through visualization of the QS signal molecules within a QQ-bead using a fluorescence microscope. As a result, under the conditions considered in this study, the surface area of QQ-media was likely to be a dominant parameter in enhancing QQ activity over total mass of entrapped QQ bacteria because QQ bacteria located near the core of a QQ-bead were unable to display their QQ activities. On the basis of this information, a more efficient QQ-medium, a QQ hollow cylinder (QQ-HC), was designed and prepared. In batch experiments, QQ-HCs showed greater QQ activity than QQ-beads as a result of their higher surface area and enhanced physical washing effect because of their larger impact area against the membrane surface. Furthermore, it was shown that such advantages of QQ-HCs resulted in more effective mitigation of membrane fouling than from QQ-beads in lab-scale continuous MBRs.


Assuntos
Bactérias/metabolismo , Incrustação Biológica , Reatores Biológicos/microbiologia , Percepção de Quorum , Meios de Cultura/química , Membranas
7.
Environ Sci Technol ; 50(4): 1788-95, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771993

RESUMO

Quorum quenching (QQ) has recently been acknowledged to be a sustainable antifouling strategy and has been investigated widely using lab-scale membrane bioreactor (MBR) systems. This study attempted to bring this QQ-MBR closer to potential practical application. Two types of pilot-scale QQ-MBRs with QQ bacteria entrapping beads (QQ-beads) were installed and run at a wastewater treatment plant, feeding real municipal wastewater to test the systems' effectiveness for membrane fouling control and thus the amount of energy savings, even under harsh environmental conditions. The rate of transmembrane pressure (TMP) build-up was significantly mitigated in QQ-MBR compared to that in a conventional-MBR. Consequently, QQ-MBR can substantially reduce energy consumption by reducing coarse bubble aeration without compromising the effluent water quality. The addition of QQ-beads to a conventional MBR substantially affected the EPS concentrations, as well as microbial floc size in the mixed liquor. Furthermore, the QQ activity and mechanical stability of QQ-beads were well maintained for at least four months, indicating QQ-MBR has good potential for practical applications.


Assuntos
Fenômenos Fisiológicos Bacterianos , Reatores Biológicos/microbiologia , Percepção de Quorum , Eliminação de Resíduos Líquidos/instrumentação , Aerobiose , Proteínas de Bactérias/metabolismo , Incrustação Biológica , Floculação , Laboratórios , Membranas , Membranas Artificiais , Projetos Piloto , Polissacarídeos Bacterianos/metabolismo , Pressão , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
8.
Environ Sci Technol ; 50(20): 10914-10922, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27634354

RESUMO

In the last 30 years, the use of membrane bioreactors (MBRs) for advanced wastewater treatment and reuse have been expanded continuously, but they still suffer from excessive energy consumption resulting from the intrinsic problem of membrane biofouling. One of the major causes of biofouling in MBRs is bacterial quorum sensing (QS) via N-acylhomoserine lactones (AHLs) and/or autoinducer-2 (AI-2), enabling intra- and interspecies communications, respectively. In this study, we demonstrate that farnesol can substantially mitigate membrane biofouling in a MBR due to its quorum quenching (QQ) activity. When Candida albicans (a farnesol producing fungus) entrapping polymer beads (AEBs) were placed in the MBR, the rate of transmembrane pressure (TMP) rise-up was substantially decreased, even for lower aeration intensities. This finding corresponds to a specific aeration energy savings of approximately 40% (25% through the physical washing effect and a further 15% through the biological QQ effect of AEBs) compared to conventional MBRs without AEBs. A real-time RT-qPCR analysis revealed that farnesol secreted from C. albicans mitigated the biofilm formation in MBRs via the suppression of AI-2 QS. Successful control of biofouling and energy savings through fungal-to-bacterial QQ could be expanded to the plant scale for MBRs in wastewater treatment with economic feasibility.


Assuntos
Percepção de Quorum/efeitos dos fármacos , Águas Residuárias , Incrustação Biológica , Reatores Biológicos/microbiologia , Membranas Artificiais , Eliminação de Resíduos Líquidos
9.
Sci Total Environ ; 944: 173999, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879019

RESUMO

Membrane technologies have become proficient alternatives for advanced wastewater treatment, ensuring high contaminant removal and sustainable resource recovery. Despite significant progress, ongoing research efforts aim to further optimize treatment performance. Among the challenges faced, membrane fouling persists as a relevant obstacle in membrane technologies, necessitating the development of more effective mitigation strategies. Mathematical models, widely employed for predicting treatment performance, generally exhibit low accuracy and suffer from uncertainties due to the complex and variable nature of wastewater. To overcome these limitations, numerous studies have proposed artificial intelligence (AI) modeling to accurately predict membrane technologies' performance and fouling mechanisms. This approach aims to provide advanced simulations and predictions, thereby enhancing process control, optimization, and intensification. This literature review explores recent advancements in modeling membrane-based wastewater treatment processes through AI models. The analysis highlights the enormous potential of this research field in enhancing the efficiency of membrane technologies. The role of AI modeling in defining optimal operating conditions, developing effective strategies for membrane fouling mitigation, enhancing the performance of novel membrane-based technologies, and improving membrane fabrication techniques is discussed. These enhanced process optimization and control strategies driven by AI modeling ensure improved effluent quality, optimized resource consumption, and minimized operating costs. The potential contribution of this cutting-edge approach to a paradigm shift toward sustainable wastewater treatment is examined. Finally, this review outlines future perspectives, emphasizing the research challenges that require attention to overcome the current limitations hindering the integration of AI modeling in wastewater treatment plants.

10.
Bioresour Technol ; 403: 130848, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761868

RESUMO

This study addresses membrane biofouling in membrane bioreactors (MBRs) by exploring fungal-to-bacterial quorum quenching (QQ) strategies. While most research has been focused on bacterial-to-bacterial QQ tactics, this study identified fungal strain Vanrija sp. MS1, which is capable of degrading N-acyl-homoserine lactones (signaling molecules of Gram-negative bacteria). To determine the benefits of fungal over bacterial strains, after immobilization on fluidizing spherical beads in an MBR, MS1 significantly reduced the fouling rate by 1.8-fold compared to control MBR, decreased extracellular polymeric substance levels in the biofilm during MBR operation, and favorably changed microbial community and bacterial network, resulting in biofouling mitigation. It is noteworthy that, unlike Rhodococcus sp. BH4, MS1 enhanced QQ activity when switching from neutral to acidic conditions. These results suggest that MS1 has the potential for the effective treatment of acidic industrial wastewater sources such as semiconductor and secondary battery wastewater using MBRs.


Assuntos
Incrustação Biológica , Reatores Biológicos , Membranas Artificiais , Percepção de Quorum , Águas Residuárias , Purificação da Água , Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Águas Residuárias/química , Águas Residuárias/microbiologia , Purificação da Água/métodos , Biofilmes , Bactérias/metabolismo
11.
Sci Total Environ ; 931: 172896, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38692327

RESUMO

The next generation of the self-forming dynamic membrane, referred to in this study as the "Living Membrane (LM)", is a new patented technology based on an encapsulated biological layer that self-forms on a designed coarse-pore size support material during wastewater treatment and acts as a natural membrane filter. Integrating electrochemical processes with wastewater treatment using the LM approach has also been recently studied (the reactor is referred to as the Electro-Living Membrane Bioreactor or e-LMBR). This study investigated the effects of varying current densities, i.e., 0.3, 0.5, and 0.9 mA/cm2, on the performance of an e-LMBR. The results were also compared with those of the Living Membrane Bioreactor or LMBR (without applied current density). Higher pollutant removals were observed in the presence of the electric field. However, the effect of varying applied current densities on the COD (98-99 %), NH3-N (97-99 %), and PO43-P (100 %) removals was not statistically significant. The more prominent differences (p < 0.05) were observed in the decrease of NO3--N concentrations from mixed liquor to effluent, with increasing current density resulting in lower mean NO3--N effluent concentrations (0.3 mA/cm2: 6.13 mg/L; 0.5 mA/cm2: 4.38 mg/L; 0.9 mA/cm2: 3.70 mg/L). The reduction of NO3--N concentrations as wastewater permeated through the LM layer also confirmed its role in removing nitrogen-containing compounds. Higher current densities resulted in lower concentrations of fouling substances, particularly those of microbial extracellular polymeric substances (EPS) and transparent exopolymer particles (TEPs). The average values of the temporal variation of transmembrane pressure (d(TMP)/d(t)) in the e-LMBR were extremely low, in the range of 0.013-0.041 kPa/day, throughout the operation period. The highest (d(TMP)/d(t)) was observed for the highest current density. However, the TMP values remained below 2 kPa in all the e-LMBR runs even after the initial LM formation stage.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Incrustação Biológica/prevenção & controle , Poluentes Químicos da Água/análise
12.
Environ Int ; 190: 108839, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943925

RESUMO

The presence in seawater of low-molecular-weight polyethylene (PE) and polydimethylsiloxane (PDMS), synthetic polymers with high chemical resistance, has been demonstrated in this study for the first time by developing a novel methodology for their recovery and quantification from surface seawater. These synthetic polymer debris (SPD) with very low molecular weights and sizes in the nano- and micro-metre range have escaped conventional analytical methods. SPD have been easily recovered from water samples (2 L) through filtration with a nitrocellulose membrane filter with a pore size of 0.45 µm. Dissolving the filter in acetone allowed the isolation of the particulates by centrifugation followed by drying. The isolated SPD were analysed by 1H nuclear magnetic resonance spectroscopy (1H NMR), identifying PE and PDMS. These polymers are thus persisting on seawater because of their low density and the ponderal concentrations were quantified in mg/m3. This method was used in an actual case study in which 120 surface seawater samples were collected during two sampling campaigns in the Mediterranean Sea (from the Gulf of Salerno to the Gulf of Policastro in South Italy). The developed analytical protocol allowed achieving unprecedented simplicity, rapidity and sensitivity. The 1H and 13C NMR structural analysis of the PE debris indicates the presence of oxidised polymer chains with very low molecular weights. Additionally, the origin of those low molecular weight polymers was investigated by analysing influents and effluents from a wastewater treatment plant (WWTP) in Salerno as a hot spot for the release of SPD: the analysis indicates the presence of low molecular weight polymers compatible with wax-PE, widely used for coating applications, food industry, cosmetics and detergents. Moreover, the origin of PDMS debris found in surface seawater can be ascribed to silicone-based antifoamers and emulsifiers.


Assuntos
Espectroscopia de Ressonância Magnética , Água do Mar , Água do Mar/química , Mar Mediterrâneo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polietileno/química , Polietileno/análise , Dimetilpolisiloxanos/química , Plásticos/análise , Plásticos/química , Polímeros/química , Polímeros/análise
13.
Water Res ; 250: 121035, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154339

RESUMO

Membrane bioreactors (MBRs) play a crucial role in wastewater treatment, but they face considerable challenges due to fouling. To tackle this issue, innovative strategies are needed. This study investigated the effectiveness of membrane reciprocation and quorum quenching (QQ) to control fouling in MBRs. The study compared MBRs using membrane reciprocation (30 rpm) and QQ (injecting media containing 100 or 200 mg/L BH4) with conventional MBRs employing different air-scouring intensities. The results demonstrated that combining membrane reciprocation (30 rpm) with QQ (200 mg/L BH4) significantly extended the service time of MBRs, making it approximately six times longer than conventional methods. Moreover, this approach reduced physically reversible resistance. The reduction in signal molecules related to biofouling due to QQ showcased its critical role in controlling biofouling, even under high shear caused by membrane reciprocation. However, the impact of QQ on microbial community structure appeared relatively insignificant when compared to factors such as operation time, aeration intensity, and membrane reciprocation. By combining membrane reciprocation and QQ, the study achieved a remarkable 81 % energy saving compared to extensive aeration (103 s-1 in velocity gradient), in addition to the extended service time. Importantly, this combined antifouling approach did not negatively affect microbial characteristics and wastewater treatment, emphasizing its effectiveness in MBRs. Overall, the findings of this study offer valuable insights for developing synergistic fouling control strategies in MBRs, significantly improving the energy efficiency of the wastewater treatment process.


Assuntos
Incrustação Biológica , Purificação da Água , Percepção de Quorum , Membranas Artificiais , Incrustação Biológica/prevenção & controle , Reatores Biológicos , Purificação da Água/métodos
14.
Water Res ; 244: 120473, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604018

RESUMO

Quorum quenching (QQ) has effectively prevented biofouling in membrane bioreactors (MBRs) employing isolated QQ bacterial strains. However, the influence of QQ on the microbial population still needs to be fully understood. This research aims to analyze the microbial population in MBRs over an extended period (>250 days) under different conditions, such as varying aeration intensities and doses of QQ bacteria, QQ media, and types of feed. Results show that no significant changes occurred in the structure and diversity of the microbial community in the mixed liquor and biofilm due to QQ treatment. Canonical correspondence analysis did reveal that the microbial communities were strongly influenced by feed types and phases. The microbial community composition varied between bacterial habitats (i.e., mixed liquor and biofilm), showing the two dominant phyla Proteobacteria and Bacteroidota in the former and Proteobacteria and Chloroflexi in the latter. The co-occurrence network analysis indicated that the biofilm (with 163 edges) in the MBR fed with real wastewater exhibited a more intricate network than the biofilm (with 53 edges) in the MBR fed with synthetic wastewater. With QQ, the biofilm exhibited more positive edges than negative ones. The phylogenetic investigation of communities showed that QQ barely affects functional gene-related quorum sensing (e.g., bacterial chemotaxis, motility proteins, and secretion) in mixed liquor but in biofilms at relatively large QQ doses (> 75 mg/L BH4). This research sheds light on the bacterial QQ's role in reducing MBR biofouling and provides crucial insights into its underlying mechanisms.


Assuntos
Incrustação Biológica , Microbiota , Percepção de Quorum , Águas Residuárias , Filogenia , Reatores Biológicos/microbiologia , Incrustação Biológica/prevenção & controle , Bactérias , Proteobactérias , Membranas Artificiais
15.
Bioresour Technol ; 363: 127930, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261999

RESUMO

Anaerobic membrane bioreactors (AnMBRs) enhance carbon neutrality with biomethane recovery from wastewater; however, microbial signaling, which may affect biological performances, was poorly understood. Here, we thus evaluate quorum sensing (QS) dynamics while monitoring acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2) levels during long-term AnMBR operations after sludge inoculation. Significant organic removal and methane production were achieved with the reactor startup. Signal molecule levels varied with transient organic loading rates, depending on their types. A starving condition may cause an increase in short- and medium-chain AHLs and AI-2. Biopolymers, biosolids, volatile fatty acids, and alkalinity levels had positive correlations with short- and medium-chain AHLs and AI-2, whereas methane production had positive correlations with long-chain AHLs. The principal component analysis of QS signal composition and biological performance data explains their interconnectivity. The findings of this study help to understand that QS signals regulate metabolic pathways in addition to microbial group behaviors.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Esgotos , Águas Residuárias , Anaerobiose , Biossólidos , Reatores Biológicos , Metano , Carbono
16.
Membranes (Basel) ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323771

RESUMO

Bacterial quorum quenching (QQ) media with various structures (e.g., bead, cylinder, hollow cylinder, and sheet), which impart biofouling mitigation in membrane bioreactors (MBRs), have been reported. However, there has been a continuous demand for membranes with QQ capability. Thus, herein, we report a novel double-layered membrane comprising an outer layer containing a QQ bacterium (BH4 strain) on the polysulfone hollow fiber membrane. The double-layered composite membrane significantly inhibits biofilm formation (i.e., the biofilm density decreases by ~58%), biopolymer accumulation (e.g., polysaccharide), and signal molecule concentration (which decreases by ~38%) on the membrane surface. The transmembrane pressure buildup to 50 kPa of the BH4-embedded membrane (17.8 h ± 1.1) is delayed by more than thrice (p < 0.05) of the control with no BH4 in the membrane's outer layer (5.5 h ± 0.8). This finding provides new insight into fabricating antibiofouling membranes with a self-regulating property against biofilm growth.

17.
Sci Total Environ ; 819: 152017, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852249

RESUMO

Photolytic quorum quenching by ultraviolet A (UVA) irradiation is an effective strategy for controlling membrane bioreactor (MBR) biofouling; however, its effects on MBR microbial communities and functional genes have not yet been explored. Here, we report on the effects of the UVA irradiation, which mitigates membrane biofouling, on the microbial community structures, alpha and beta diversities, and functional gene expressions in the MBR mixed liquor and biocake (membrane fouling layer) for the first time. The results show that the microbial communities become less diversified when alternating UVA is applied to the MBRs. The changes in the community structure are highly influenced by spatiotemporal factors, such as microbial habitats (mixed liquor and biocake) and reactor operation time, although UVA irradiation also has some impacts on the community. The relative abundance of the Sphingomonadaceae family, which can decompose the furan ring of autoinducer-2 (AI-2) signal molecules, becomes greater with continuous UVA irradiation. Xanthomonadaceae, which produces biofilm-degrading enzymes, is also more abundant with UVA photolysis than without it. Copies of monooxygenase and hydroxylase enzyme-related genes increase in the MBR with longer UVA exposures (i.e., continuous UVA). These enzymes seem to be inducible by UVA, enhancing the AI-2 inactivation. In conclusion, UVA irradiation alters the microbial community and the metabolism in the MBR, contributing to the membrane biofouling mitigation.


Assuntos
Incrustação Biológica , Microbiota , Reatores Biológicos , Expressão Gênica , Membranas Artificiais , Fotólise , Percepção de Quorum
18.
Chemosphere ; 277: 130249, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33770689

RESUMO

Removal of nitrosamines from water intended for consumption is an important topic due to the carcinogenic risks they pose to human health. In this study, we measure and compare nitrosamine removal by four individuals and three combinations of water treatments applied in situ as a pilot study and in the laboratory. Of the two advanced oxidation processes tested, UV irradiation at a wavelength of 254 nm was more effective in nitrosamine removal than ozonation; however, the efficacy of UV photolysis required a high dose (>635 mJ/cm2) for sufficient (>90%) removal of the contaminants. The biological activated carbon (BAC) process was also effective at removing nitrosamines, most of which were adsorbed onto the carbon. A small fraction (<10%) of nitrosamines were removed through biodegradation. Nanofiltration membranes were limited in removing nitrosamines, particularly N-nitrosodimethylamine, which is hydrophilic. Employing either UV or BAC treatments can warrant a high degree of elimination of nitrosamines; however, desorption of nitrosamines from BAC can occur due to variations in the quality of source water and the types of carbon filters used. Combined treatments using both UV and BAC processes offer promising alternative strategies for removing nitrosamines when treating water for human consumption.


Assuntos
Nitrosaminas , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Dimetilnitrosamina , Humanos , Projetos Piloto , Poluentes Químicos da Água/análise
19.
Chemosphere ; 265: 129166, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33302205

RESUMO

Metal oxide anode electrocatalysts are important for an effective removal of contaminants and the enhancement of electrode durability in the electrochemical oxidation process. Herein, we report the enhanced lifetime of RuOx-TiO2 composite anodes that was achieved by optimizing the fabrication conditions (e.g., the Ru mole fraction, total metal content, and calcination time). The electrode durability was assessed through accelerated service lifetime tests conducted under harsh environmental conditions, by using 3.4% NaCl and 1.0 A/cm2. The electrochemical characteristics of the anodes prepared with metal oxides having different compositions were evaluated using cyclic voltammetry, electrochemical impedance spectroscopy, and X-ray analyses. We noticed that, the larger the Ru mole fraction, the more durable were the electrodes. The RuOx-TiO2 electrodes were found to be highly stable when the Ru mole fraction was >0.7. The 0.8RuOx-0.2TiO2 electrode was selected as the one with the most appropriate composition, considering both its stability and contaminant treatability. The electrodes that underwent a 7-h calcination (between 1 and 10 h) showed the longest lifetime under the tested conditions, because of the formation of a stable Ru oxide structure (i.e., RuO3) and a lower resistance to charge transfer. The electrode deactivation mechanism that occurred due to the dissolution of active catalysts over time was evidenced by an impedance analysis of the electrode itself and surface elemental mapping.


Assuntos
Purificação da Água , Eletrodos , Óxidos , Titânio
20.
Chemosphere ; 264(Pt 2): 128573, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33059281

RESUMO

In this study, an electro-replacement/precipitation/deposition/direct reduction (ERPDD) process with scrap iron packed in a Ti mesh cage as a sacrificial anode was investigated for the treatment of wastewater containing CuEDTA complexes. The ERPDD mechanisms were responsible for the removal of Cu from CuEDTA complexes and were verified by a series of experiments using either iron or carbon plates as anodes for the Cu-containing solutions with and without EDTA. A complete Cu removal was achieved with electrical current density applied (1.18-2.36 mA/cm2), whereas only 60% of the Cu was removed without electricity. Dissolved oxygen (DO) was found to have a significant impact on Cu removal. Aeration reduced Cu removal (i.e., only 60% of the Cu was removed), whereas complete Cu removal was achieved with negligible DO concentration under mechanical mixing and N2 purging conditions. Compared to chemical replacement/precipitation (CRP) process, the ERPDD was able to save approximately 60-75% of the total operational costs during the treatment of CuEDTA-containing wastewater, due to the electrochemically controlled dosing of inexpensive sacrificial scrap iron and additional removal mechanisms not found in the CRP process.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Precipitação Química , Cobre , Eletrodos , Ferro , Águas Residuárias/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA