Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nature ; 629(8010): 92-97, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503346

RESUMO

Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.

2.
Nat Mater ; 23(1): 101-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884670

RESUMO

Ammonia (NH3) is a key commodity chemical for the agricultural, textile and pharmaceutical industries, but its production via the Haber-Bosch process is carbon-intensive and centralized. Alternatively, an electrochemical method could enable decentralized, ambient NH3 production that can be paired with renewable energy. The first verified electrochemical method for NH3 synthesis was a process mediated by lithium (Li) in organic electrolytes. So far, however, elements other than Li remain unexplored in this process for potential benefits in efficiency, reaction rates, device design, abundance and stability. In our demonstration of a Li-free system, we found that calcium can mediate the reduction of nitrogen for NH3 synthesis. We verified the calcium-mediated process using a rigorous protocol and achieved an NH3 Faradaic efficiency of 40 ± 2% using calcium tetrakis(hexafluoroisopropyloxy)borate (Ca[B(hfip)4]2) as the electrolyte. Our results offer the possibility of using abundant materials for the electrochemical production of NH3, a critical chemical precursor and promising energy vector.

4.
Nature ; 570(7762): 504-508, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31117118

RESUMO

The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative1-4 to the energy-intensive Haber-Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges5,6 facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation7-9 rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes9, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream10, in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed11,12, concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination. Here we propose a rigorous procedure using 15N2 that enables us to reliably detect and quantify the electrochemical reduction of nitrogen to ammonia. We demonstrate experimentally the importance of various sources of contamination, and show how to remove labile nitrogen-containing compounds from the nitrogen gas as well as how to perform quantitative isotope measurements with cycling of 15N2 gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we find that no ammonia is produced when using the most promising pure-metal catalysts for this reaction in aqueous media, and we successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran13. The use of this rigorous protocol should help to prevent false positives from appearing in the literature, thus enabling the field to focus on viable pathways towards the practical electrochemical reduction of nitrogen to ammonia.

5.
J Am Chem Soc ; 146(3): 2015-2023, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196113

RESUMO

Understanding the size-dependent behavior of nanoparticles is crucial for optimizing catalytic performance. We investigate the differences in selectivity of size-selected gold nanoparticles for CO2 electroreduction with sizes ranging from 1.5 to 6.5 nm. Our findings reveal an optimal size of approximately 3 nm that maximizes selectivity toward CO, exhibiting up to 60% Faradaic efficiency at low potentials. High-resolution transmission electron microscopy reveals different shapes for the particles and suggests that multiply twinned nanoparticles are favorable for CO2 reduction to CO. Our analysis shows that twin boundaries pin 8-fold coordinated surface sites and in turn suggests that a variation of size and shape to optimize the abundance of 8-fold coordinated sites is a viable path for optimizing the CO2 electrocatalytic reduction to CO. This work contributes to the advancement of nanocatalyst design for achieving tunable selectivity for CO2 conversion into valuable products.

6.
Phys Chem Chem Phys ; 26(25): 17456-17466, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38888144

RESUMO

While model studies with small nanoparticles offer a bridge between applied experiments and theoretical calculations, the intricacies of working with well-defined nanoparticles in electrochemistry pose challenges for experimental researchers. This perspective dives into nanoparticle electrochemistry, provides experimental insights to uncover their intrinsic catalytic activity and draws conclusions about the effects of altering their size, composition, or loading. Our goal is to help uncover unexpected contamination sources and establish a robust experimental methodology, which eliminates external parameters that can overshadow the intrinsic activity of the nanoparticles. Additionally, we explore the experimental difficulties that can be encountered, such as stability issues, and offer strategies to mitigate their impact. From support preparation to electrocatalytic tests, we guide the reader through the entire process, shedding light on potential challenges and crucial experimental details when working with these complex systems.

7.
Phys Chem Chem Phys ; 26(12): 9253-9263, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445363

RESUMO

Stability under reactive conditions poses a common challenge for cluster- and nanoparticle-based catalysts. Since the catalytic properties of <5 nm gold nanoparticles were first uncovered, optimizing their stability at elevated temperatures for CO oxidation has been a central theme. Here we report direct observations of improved stability of AuTiOx alloy nanoparticles for CO oxidation compared with pure Au nanoparticles on TiO2. The nanoparticles were synthesized using a magnetron sputtering, gas-phase aggregation cluster source, size-selected using a lateral time-of-flight mass filter and deposited onto TiO2-coated micro-reactors for thermocatalytic activity measurements of CO oxidation. The AuTiOx nanoparticles exhibited improved stability at elevated temperatures, which is attributed to a self-anchoring interaction with the TiO2 substrate. The structure of the AuTiOx nanoparticles was also investigated in detail using ion scattering spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The measurements showed that the alloyed nanoparticles exhibited a core-shell structure with an Au core surrounded by an AuTiOx shell. The structure of these alloy nanoparticles appeared stable even at temperatures up to 320 °C under reactive conditions, for more than 140 hours. The work presented confirms the possibility of tuning catalytic activity and stability via nanoparticle alloying and self-anchoring on TiO2 substrates, and highlights the importance of complementary characterization techniques to investigate and optimize nanoparticle catalyst designs of this nature.

8.
Angew Chem Int Ed Engl ; 62(3): e202214383, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36374271

RESUMO

Zero-gap anion exchange membrane (AEM)-based CO2 electrolysis is a promising technology for CO production, however, their performance at elevated current densities still suffers from the low local CO2 concentration due to heavy CO2 neutralization. Herein, via modulating the CO2 feed mode and quantitative analyzing CO2 utilization with the aid of mass transport modeling, we develop a descriptor denoted as the surface-accessible CO2 concentration ([CO2 ]SA ), which enables us to indicate the transient state of the local [CO2 ]/[OH- ] ratio and helps define the limits of CO2 -to-CO conversion. To enrich the [CO2 ]SA , we developed three general strategies: (1) increasing catalyst layer thickness, (2) elevating CO2 pressure, and (3) applying a pulsed electrochemical (PE) method. Notably, an optimized PE method allows to keep the [CO2 ]SA at a high level by utilizing the dynamic balance period of CO2 neutralization. A maximum jCO of 368±28 mA cmgeo -2 was achieved using a commercial silver catalyst.

9.
Langmuir ; 38(4): 1514-1521, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044193

RESUMO

Establishing relationships between the surface atomic structure and activity of Cu-based electrocatalysts for CO2 and CO reduction is hindered by probable surface restructuring under working conditions. Insights into these structural evolutions are scarce as techniques for monitoring the surface facets in conventional experimental designs are lacking. To directly correlate surface reconstructions to changes in selectivity or activity, the development of surface-sensitive, electrochemical probes is highly desirable. Here, we report the underpotential deposition of lead over three low index Cu single crystals in alkaline media, the preferred electrolyte for CO reduction studies. We find that underpotential deposition of Pb onto these facets occurs at distinct potentials, and we use these benchmarks to probe the predominant facet of polycrystalline Cu electrodes in situ. Finally, we demonstrate that Cu and Pb form an irreversible surface alloy during underpotential deposition, which limits this method to investigating the surface atomic structure after reaction.

10.
Anal Chem ; 93(18): 7022-7028, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905662

RESUMO

Electrochemistry-mass spectrometry is a versatile and reliable tool to study the interfacial reaction rates of Faradaic processes with high temporal resolutions. However, the measured mass spectrometric signals typically do not directly correspond to the partial current density toward the analyte due to mass transport effects. Here, we introduce a mathematical framework, grounded on a mass transport model, to obtain a quantitative and truly dynamic partial current density from a measured mass spectrometer signal by means of deconvolution. Furthermore, it is shown that the time resolution of electrochemistry-mass spectrometry is limited by entropy-driven processes during mass transport to the mass spectrometer. The methodology is validated by comparing the measured impulse responses of hydrogen and oxygen evolution to the model predictions and subsequently applied to uncover dynamic phenomena during hydrogen and oxygen evolution in an acidic electrolyte.


Assuntos
Eletrólitos , Eletroquímica , Entropia , Espectrometria de Massas
11.
Chem Rev ; 119(12): 7610-7672, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31117420

RESUMO

To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

12.
Phys Chem Chem Phys ; 23(42): 24396-24402, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693410

RESUMO

We present a scheme to extract the adsorption energy, adsorbate interaction parameter and the saturation coverage from temperature programmed desorption (TPD) experiments. We propose that the coverage dependent adsorption energy can be fit using a functional form including the configurational entropy and linear adsorbate-adsorbate interaction terms. As one example of this scheme, we analyze TPD of CO desorption on Au(211) and Au(310) surfaces. We determine that under atmospheric CO pressure, the steps of both facets adsorb between 0.4-0.9 ML coverage of CO*. We compare this result against energies obtained from five density functionals, RPBE, PBE, PBE-D3, RPBE-D3 and BEEF-vdW. We find that the energies and equilibrium coverages from RPBE-D3 and PBE are closest to the values determined from the TPD.

13.
Chemphyschem ; 20(22): 3024-3029, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31448851

RESUMO

Efficient electrocatalysts are required in order for electrocatalysis to play a large role in a future largely based on renewable energy sources. To rationally design these catalysts we need to understand the fundamental origin of their activities. In order to elucidate the relationship between catalyst structure and electrochemical behaviour, we investigate well-defined single-crystal catalysts in a UHV chamber interfaced with an electrochemical setup. Using the capabilities of UHV based methods, we can prepare more complex surface structures than it is possible with traditional EC methods and investigate their electrochemical behaviour. We exemplify this by showing results from both clean and intentionally structured Pt(111), Cu(111) and Pt/Cu(111).

14.
Sci Technol Adv Mater ; 20(1): 521-531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191761

RESUMO

The CO2 hydrogenation to methanol is efficiently catalyzed at ambient pressure by nanodispersed intermetallic GaPd2/SiO2 catalysts prepared by incipient wetness impregnation. Here we optimize the catalyst in terms of metal content and reduction temperature in relation to its catalytic activity. We find that the intrinsic activity is higher for the GaPd2/SiO2 catalyst with a metal loading of 13 wt.% compared to catalysts with 23 wt.% and 7 wt.%, indicating that there is an optimum particle size for the reaction of around 8 nm. The highest catalytic activity is measured on catalysts reduced at 550°C. To unravel the formation of the active phase, we studied calcined GaPd2/SiO2 catalysts with 23 wt.% and 13 wt.% using a combination of in situ techniques: X-ray diffraction (XRD), X-ray absorption near edge fine structure (XANES) and extended X-ray absorption fine structure (EXAFS). We find that the catalyst with higher metal content reduces to metallic Pd in a mixture of H2/Ar at room temperature, while the catalyst with lower metal content retains a mixture of PdO and Pd up to 140°C. Both catalysts form the GaPd2 phase above 300°C, albeit the fraction of crystalline intermediate Pd nanoparticles of the catalyst with higher metal loading reduces at higher temperature. In the final state, the catalyst with higher metal loading contains a fraction of unalloyed metallic Pd, while the catalyst with lower metal loading is phase pure. We discuss the alloying mechanism leading to the catalyst active phase formation selecting three temperatures: 25°C, 320°C and 550°C.

15.
Nano Lett ; 18(6): 3454-3460, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29664650

RESUMO

Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo75Ni25 metal target in a reactive atmosphere of Ar and H2S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered by a quadrupole mass filter and subsequently deposited on a planar substrate, such as a grid for electron microscopy or a microreactor. By varying the mass of the deposited nanoparticles, it is demonstrated that the Ni-Mo-S nanoparticles can be tuned into fullerene-like particles, flat-lying platelets, and upright-oriented platelets. The nanoparticle morphologies provide different abundances of Ni-Mo-S edge sites, which are commonly considered the catalytically important sites. Using a microreactor system, we assess the catalytic activity of the Ni-Mo-S nanoparticles for the HDS of dibenzothiophene. The measurements show that platelets are twice as active as the fullerene-like particles, demonstrating that the Ni-Mo-S edges are more active than basal planes for the HDS. Furthermore, the upright-standing orientation of platelets show an activity that is six times higher than the fullerene-like particles, demonstrating the importance of the edge site number and accessibility to reducing, e.g., sterical hindrance for the reacting molecules.

16.
Angew Chem Int Ed Engl ; 58(12): 3774-3778, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30673156

RESUMO

An understanding of the influence of structural surface features on electrocatalytic reactions is vital for the development of efficient nanostructured catalysts. Gold is the most active and selective known electrocatalyst for the reduction of CO2 to CO in aqueous electrolytes. Numerous strategies have been proposed to improve its intrinsic activity. Nonetheless, the atomistic knowledge of the nature of the active sites remains elusive. We systematically investigated the structure sensitivity of Au single crystals for electrocatalytic CO2 reduction. Reaction kinetics for the formation of CO are strongly dependent on the surface structure. Under-coordinated sites, such as those present in Au(110) and at the steps of Au(211), show at least 20-fold higher activity than more coordinated configurations (for example, Au(100)). By selectively poisoning under-coordinated sites with Pb, we have confirmed that these are the active sites for CO2 reduction.

17.
Chemistry ; 24(67): 17743-17755, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30183114

RESUMO

Single and polycrystalline Cu electrodes serve as model systems for the study of the electroreduction of CO2 , CO and nitrate, or for corrosion studies; even so, there are very few reports combining electrochemical measurements with structural characterization. Herein both the electrochemical properties of polycrystalline Cu and single crystal Cu(1 0 0) electrodes in alkaline solutions (0.1 m KOH and 0.1 m NaOH) are investigated. It is demonstrated that the pre-treatment of the electrodes plays a crucial role in determining their electrochemical properties. Scanning tunneling microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry are performed on Cu(1 0 0) electrodes prepared under UHV conditions; it is shown that the electrochemical properties of these atomically well-defined electrodes are distinct from electrodes prepared by other methods. Also highlighted is the significant role of residual oxygen and electrolyte convection in influencing the electrochemical properties.

18.
Chemistry ; 24(47): 12280-12290, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29923250

RESUMO

Alloys of platinum and gadolinium present significant activity enhancement over pure Pt for the oxygen reduction reaction (ORR), both in the form of extended electrode surfaces and nanoparticulate catalysts. The active phase consists of a compressed Pt overlayer formed on Pt5 Gd electrodes upon exposure to the electrolyte by acid leaching. Here, we investigate the formation, strain and correlation lengths of the active Pt overlayer by using in situ synchrotron grazing incidence X-ray diffraction on Gd/Pt(111) single-crystalline electrodes. The overlayer forms upon exposure to electrolyte under open circuit conditions; the compressive strain relaxes slightly upon repeated electrochemical cycling in the potential range 0.6 to 1.0 V versus the reversible hydrogen electrode (RHE). In addition, the strain relaxes strongly when exposing the electrode to 1.2 V versus RHE, and the thickness of the crystalline portion of the overlayer increases with potential above 1.3 V versus RHE.

19.
Chem Soc Rev ; 46(7): 1933-1954, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28246670

RESUMO

Photoelectrochemical (PEC) solar-fuel conversion is a promising approach to provide clean and storable fuel (e.g., hydrogen and methanol) directly from sunlight, water and CO2. However, major challenges still have to be overcome before commercialization can be achieved. One of the largest barriers to overcome is to achieve a stable PEC reaction in either strongly basic or acidic electrolytes without degradation of the semiconductor photoelectrodes. In this work, we discuss fundamental aspects of protection strategies for achieving stable solid/liquid interfaces. We then analyse the charge transfer mechanism through the protection layers for both photoanodes and photocathodes. In addition, we review protection layer approaches and their stabilities for a wide variety of experimental photoelectrodes for water reduction. Finally, we discuss key aspects which should be addressed in continued work on realizing stable and practical PEC solar water splitting systems.

20.
Angew Chem Int Ed Engl ; 57(11): 2800-2805, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29345738

RESUMO

The relationship between the binding of the reaction intermediates and oxygen reduction activity in alkaline media was experimentally explored. By introducing Cu into the 2nd surface layer of a Pt(111) single crystal, the surface reactivity was tuned. In both 0.1 m NaOH and 0.1 m KOH, the optimal catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits a maximum activity of 101±8 mA cm-2 at 0.9 V vs. a reversible hydrogen electrode (RHE). This activity constitutes a circa 60-fold increase over Pt(111) in 0.1 m HClO4 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA