Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2320777121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630719

RESUMO

The hybrid electrolyzer coupled glycerol oxidation (GOR) with hydrogen evolution reaction (HER) is fascinating to simultaneously generate H2 and high value-added chemicals with low energy input, yet facing a challenge. Herein, Cu-based metal-organic frameworks (Cu-MOFs) are reported as model catalysts for both HER and GOR through doping of atomically dispersed precious and nonprecious metals. Remarkably, the HER activity of Ru-doped Cu-MOF outperformed a Pt/C catalyst, with its Faradaic efficiency for formate formation at 90% at a low potential of 1.40 V. Furthermore, the hybrid electrolyzer only needed 1.36 V to achieve 10 mA cm-2, 340 mV lower than that for splitting pure water. Theoretical calculations demonstrated that electronic interactions between the host and guest (doped) metals shifted downward the d-band centers (εd) of MOFs. This consequently lowered water adsorption and dissociation energy barriers and optimized hydrogen adsorption energy, leading to significantly enhanced HER activities. Meanwhile, the downshift of εd centers reduced energy barriers for rate-limiting step and the formation energy of OH*, synergistically enhancing the activity of MOFs for GOR. These findings offered an effective means for simultaneous productions of hydrogen fuel and high value-added chemicals using one hybrid electrolyzer with low energy input.

2.
Proc Natl Acad Sci U S A ; 121(5): e2316914121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252828

RESUMO

High-performance sodium storage at low temperature is urgent with the increasingly stringent demand for energy storage systems. However, the aggravated capacity loss is induced by the sluggish interfacial kinetics, which originates from the interfacial Na+ desolvation. Herein, all-fluorinated anions with ultrahigh electron donicity, trifluoroacetate (TFA-), are introduced into the diglyme (G2)-based electrolyte for the anion-reinforced solvates in a wide temperature range. The unique solvation structure with TFA- anions and decreased G2 molecules occupying the inner sheath accelerates desolvation of Na+ to exhibit decreased desolvation energy from 4.16 to 3.49 kJ mol-1 and 24.74 to 16.55 kJ mol-1 beyond and below -20 °C, respectively, compared with that in 1.0 M NaPF6-G2. These enable the cell of Na||Na3V2(PO4)3 to deliver 60.2% of its room-temperature capacity and high capacity retention of 99.2% after 100 cycles at -40 °C. This work highlights regulation of solvation chemistry for highly stable sodium-ion batteries at low temperature.

3.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477330

RESUMO

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

4.
Nano Lett ; 24(15): 4546-4553, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588452

RESUMO

Organic materials have attracted extensive attention for potassium-ion batteries due to their flexible structure designability and environmental friendliness. However, organic materials generally suffer from unavoidable dissolution in aprotic electrolytes, causing an unsatisfactory electrochemical performance. Herein, we designed a weakly solvating electrolyte to boost the potassium storage performance of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). The electrolyte induces an in situ morphology evolution and achieves a nanowire structure. The weakly dissolving capability of ethylene glycol diethyl ether-based electrolyte and unique nanowire structure effectively avoid the dissolution of PTCDA. As a result, PTCDA shows excellent cycling stability (a capacity retention of 89.1% after 2000 cycles) and good rate performance (70.3 mAh g-1 at 50C). In addition, experimental detail discloses that the sulfonyl group plays a key role in inducing morphology evolution during the charge/discharge process. This work opens up new opportunities in electrolyte design for organic electrodes and illuminates further developments of potassium-ion batteries.

5.
Small ; 20(12): e2307132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946700

RESUMO

Large reserves, high capacity, and low cost are the core competitiveness of disordered carbon materials as excellent anode materials for sodium-ion batteries (SIBs). And the existence and improper treatment of a large number of organic solid wastes will aggravate the burden on the environment, therefore, it is significant to transform wastes into carbon-based materials for sustainable energy utilization. Herein, a kind of hard carbon materials are reported with waste biomass-foam as the precursor, which can improve the sodium storage performance through pre-oxidation strategy. The introduction of oxygen-containing groups can promote structural cross-linking, and inhibit the melting and rearrangement of carbon structure during high-temperature carbonization that produces a disordered structure with a suitable degree of graphitization. Moreover, the micropore structure are also regulated during the high-temperature carbonization process, which is conducive to the storage of sodium ions in the low-voltage plateau region. The optimized sample as an electrode material exhibits excellent reversible specific capacity (308.0 mAh g-1) and initial Coulombic efficiency (ICE, 90.1%). In addition, a full cell with the waste foam-derived hard carbon anode and a Na3V2(PO4)3 cathode is constructed with high ICE and energy density. This work provides an effective strategy to conversion the waste to high-value hard carbon anode for sodium-ion batteries.

6.
Small ; : e2406565, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268806

RESUMO

Lithium-sulfur (Li-S) batteries are considered the most promising energy storage battery due to their low cost and high theoretical energy density. However, the low utilization rate of sulfur and slow redox kinetics have seriously limited the development of Li-S batteries. Herein, the electronic state modulation of metal selenides induced by the bi-metallic coupling strategy is reported to enhance the redox reaction kinetics and sulfur utilization, thereby improving the electrochemical performance of Li-S batteries. Theoretical calculations reveal that the electronic structure can be modulated by Ni-Co coupling, thus lowering the conversion barrier of lithium polysulfides (LiPSs) and Li+, and the synergistic interaction between NiCoSe nanoparticles and nitrogen-doped porous carbon (NPC) is facilitating to enhance electron transport and ion transfer kinetics of the NiCoSe@NPC-S electrodes. As a result, the assembled Li-S batteries based on NiCoSe@NPC-S exhibit high capacities (1020 mAh g-1 at 1 C) and stable cycle performance (80.37% capacity retention after 500 cycles). The special structural design and bimetallic coupling strategy promote the batteries working even under lean electrolyte (7.2 µL mg-1) with a high sulfur loading (6.5 mg cm-2). The proposed bimetallic coupling strategy modulating electronic construction with N-doping porous carbon has jointly contributed the good redox reaction kinetics and high sulfur utilization.

7.
Small ; 20(27): e2312211, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381004

RESUMO

Uveal melanoma (UM) is an ocular cancer predominantly affecting adults, characterized by challenging diagnostic outcomes. This research endeavors to develop an innovative multifunctional nanocomposite system sensitive to near-infrared (NIR) radiation, serving as both a non-oxygen free-radical generator and a photothermal agent. The designed system combines azobis isobutyl imidazoline hydrochloride (AIBI) with mesoporous copper sulfide (MCuS) nanoparticles. MCuS harnesses NIR laser energy to induce photothermal therapy, converting light energy into heat to destroy cancer cells. Simultaneously, AIBI is activated by the NIR laser to produce alkyl radicals, which induce DNA damage in remaining cancer cells. This distinctive feature equips the designed system to selectively eliminate cancers in the hypoxic tumor microenvironment. MCuS is also beneficial to scavenge the overexpressed glutathione (GSH) in the tumor microenvironment. GSH generally consumes free radicals and hiders the PDT effect. To enhance control over AIBI release in cancer cells, 1-tetradecyl alcohol (TD), a phase-changing material, is introduced onto the surface of MCuS nanoparticles to create the final AMPT nanoparticle system. In vitro and in vivo experiments confirm the remarkable anti-tumor efficacy of AMPT. Notably, the study introduces an orthotopic tumor model for UM, demonstrating the feasibility of precise and effective targeted treatment within the ocular system.


Assuntos
Cobre , Melanoma , Nanocompostos , Terapia Fototérmica , Neoplasias Uveais , Cobre/química , Neoplasias Uveais/terapia , Neoplasias Uveais/patologia , Melanoma/terapia , Melanoma/patologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Humanos , Animais , Radicais Livres/química , Linhagem Celular Tumoral , Porosidade , Sulfetos/química , Camundongos , Imidazóis/química , Microambiente Tumoral/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/química
8.
Small ; 20(11): e2306690, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926792

RESUMO

Non-aqueous solvents, in particular N,N-dimethylaniline (NMP), are widely applied for electrode fabrication since most sodium layered oxide cathode materials are readily damaged by water molecules. However, the expensive price and poisonousness of NMP unquestionably increase the cost of preparation and post-processing. Therefore, developing an intrinsically stable cathode material that can implement the water-soluble binder to fabricate an electrode is urgent. Herein, a stable nanosheet-like Mn-based cathode material is synthesized as a prototype to verify its practical applicability in sodium-ion batteries (SIBs). The as-prepared material displays excellent electrochemical performance and remarkable water stability, and it still maintains a satisfactory performance of 79.6% capacity retention after 500 cycles even after water treatment. The in situ X-ray diffraction (XRD) demonstrates that the synthesized material shows an absolute solid-solution reaction mechanism and near-zero-strain. Moreover, the electrochemical performance of the electrode fabricated with a water-soluble binder shows excellent long-cycling stability (67.9% capacity retention after 500 cycles). This work may offer new insights into the rational design of marvelous water stability cathode materials for practical SIBs.

9.
Chemistry ; 30(55): e202304106, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39083260

RESUMO

Sodium-oxygen batteries have been regarded as promising energy storage devices due to their low overpotential and high energy density. Its applications, however, still face formidable challenges due to the lack of understanding about the influence of electrocatalysts on the discharge products. Here, a phosphorous and nitrogen dual-doped carbon (PNDC) based cathode is synthesized to increase the electrocatalytic activity and to stabilize the NaO2 superoxide nanoparticle discharge products, leading to enhanced cycling stability when compared to the nitrogen-doped carbon (NDC). The PNDC air cathode exhibits a low overpotential (0.36 V) and long cycling stability (120 cycles). The reversible formation/decomposition and stabilization of the NaO2 discharge products are clearly proven by in-situ synchrotron X-ray diffraction and ex-situ X-ray diffraction. Based on the density functional theory calculation, the PNDC has much stronger adsorption (-2.85 eV) for NaO2 than that of NDC (-1.80 eV), which could efficiently stabilize the NaO2 discharge products.

10.
Angew Chem Int Ed Engl ; 63(38): e202408218, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38923694

RESUMO

Photorechargeable zinc ion batteries (PZIBs), which can directly harvest and store solar energy, are promising technologies for the development of a renewable energy society. However, the incompatibility requirement between narrow band gap and wide coverage has raised severe challenges for high-efficiency dual-functional photocathodes. Herein, half-metallic vanadium (III) oxide (V2O3) was first reported as a dual-functional photocathode for PZIBs. Theoretical and experimental results revealed its unique photoelectrical and zinc ion storage properties for capturing and storing solar energy. To this end, a synergistic protective etching strategy was developed to construct carbon superstructure-supported V2O3 nanospheres (V2O3@CSs). The half-metallic characteristics of V2O3, combined with the three-dimensional superstructure assembled by ultrathin carbon nanosheets, established rapid charge transfer networks and robust framework for efficient and stable solar-energy storage. Consequently, the V2O3@CSs photocathode delivered record zinc ion storage properties, including a photo-assisted discharge capacities of 463 mA ⋅ h ⋅ g-1 at 2.0 A ⋅ g-1 and long-term cycling stability over 3000 cycles. Notably, the PZIBs assembled using V2O3@CSs photocathodes could be photorecharged without an external circuit, exhibiting a high photo conversion efficiency (0.354 %) and photorecharge voltage (1.0 V). This study offered a promising direction for the direct capture and storage of solar energy.

11.
Angew Chem Int Ed Engl ; 63(21): e202402342, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38491787

RESUMO

Zn deposition with a surface-preferred (002) crystal plane has attracted extensive attention due to its inhibited dendrite growth and side reactions. However, the nucleation and growth of the Zn(002) crystal plane are closely related to the interfacial properties. Herein, oriented growth of Zn(002) crystal plane is realized on Ag-modified surface that is directly visualized by in situ atomic force microscopy. A solid solution HCP-Zn (~1.10 at. % solubility of Ag, 30 °C) is formed on the Ag coated Zn foil (Zn@Ag) and possesses the same crystal structure as Zn to reduce its nucleation barrier caused by their lattice mismatch. It merits oriented Zn deposition and corrosion-resistant surface, and presents long cycling stability in symmetric cells and full cells coupled with V2O5 cathode. This work provides insights into interfacial regulation of Zn anodes for high-performance aqueous zinc metal batteries.

12.
Angew Chem Int Ed Engl ; 63(12): e202318000, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226788

RESUMO

The kinetics and durability of conversion-based anodes greatly depend on the intrinsic stress regulating ability of the electrode materials, which has been significantly neglected. Herein, a stress dissipation strategy driven by multi-interface built-in electric fields (BEFs) and architected structure, is innovatively proposed to design ultrafast and long-term sodium ion storage anodes. Binary Mo/Fe sulfide heterostructured nanorods with multi-interface BEFs and staggered cantilever configuration are fabricated to prove our concept. Multi-physics simulations and experimental results confirm that the inner stress in multiple directions can be dissipated by the multi-interface BEFs at the micro-scale, and by the staggered cantilever structure at the macro-scale, respectively. As a result, our designed heterostructured nanorods anode exhibits superb rate capability (332.8 mAh g-1 at 10.0 A g-1 ) and durable cyclic stability over 900 cycles at 5.0 A g-1 , outperforming other metal chalcogenides. This proposed stress dissipation strategy offers a new insight for developing stable structures for conversion-based anodes.

13.
Angew Chem Int Ed Engl ; 63(3): e202313142, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37917045

RESUMO

Sodium dual-ion batteries (Na-DIBs) have attracted increasing attention due to their high operative voltages and low-cost raw materials. However, the practical applications of Na-DIBs are still hindered by the issues, such as low capacity and poor Coulombic efficiency, which is highly correlated with the compatibility between electrode and electrolyte but rarely investigated. Herein, fluoroethylene carbonate (FEC) is introduced into the electrolyte to regulate cation/anion solvation structure and the stability of cathode/anode-electrolyte interphase of Na-DIBs. The FEC modulates the environment of PF6 - solvation sheath and facilitates the interaction of PF6 - on graphite. In addition, the NaF-rich interphase caused by the preferential decomposition of FEC effectively inhibits side reactions and pulverization of anodes with the electrolyte. Consequently, Sb||graphite full cells in FEC-containing electrolyte achieve an improved capacity, cycling stability and Coulombic efficiency. This work elucidates the underlying mechanism of bifunctional FEC and provides an alternative strategy of building high-performance dual ion batteries.

14.
Angew Chem Int Ed Engl ; 63(40): e202410590, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888029

RESUMO

Iron-based mixed polyanion phosphate Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a promising cathode for Sodium-ion Batteries (SIBs) due to its low cost and environmental friendliness. However, its inherent low conductivity and sluggish Na+ diffusion limit fast charge and low-temperature sodium storage. This study pioneers a scalable synthesis of hollow core-shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with tiny-void space (THoCS-0.6Ni) via a one-step spray-drying combined with calcination process due to the different viscosity, coordination ability, molar ratios, and shrinkage rates between citric acid and polyvinylpyrrolidone. This unique structure with interconnected carbon networks ensures rapid electron transport and fast Na+ diffusion, as well as efficient space utilization for relieving volume expansion. Incorporating regulation of lattice structure by doping Ni heteroatom to effectively improve intrinsic electron conductivity and optimize Na+ diffusion path and energy barrier, which achieves fast charge and low-temperature sodium storage. As a result, THoCS-0.6Ni exhibits superior rate capability (86.4 mAh g-1 at 25 C). Notably, THoCS-0.6Ni demonstrates exceptional cycling stability at -20 °C with a capacity of 43.6 mAh g-1 after 2500 cycles at 5 C. This work provides a universal strategy to design the hollow core-shelled structure with tiny-void space cathode materials for reversible batteries with fast-charge and low-temperature Na-storage features.

15.
Angew Chem Int Ed Engl ; 63(31): e202406889, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38742478

RESUMO

Given the merits of abundant resource, low cost and high electrochemical activity, hard carbons have been regarded as one of the most commercializable anode material for sodium-ion batteries (SIBs). However, poor rate capability is one of the main obstacles that severely hinder its further development. In addition, the relationships between preparation method, material structure and electrochemical performance have not been clearly elaborated. Herein, a simple but effective strategy is proposed to accurately construct the multiple structural features in hard carbon via adjusting the components of precursors. Through detailed physical characterization of the hard carbons derived from different regulation steps, and further combined with in-situ Raman and galvanostatic intermittent titration technique (GITT) analysis, the network of multiple relationships between preparation method, microstructure, sodium storage behavior and electrochemical performance have been successfully established. Simultaneously, exceptional rate capability about 108.8 mAh g-1 at 8 A g-1 have been achieved from RHC sample with high reversible capacity and desirable initial Coulombic efficiency (ICE). Additionally, the practical applications can be extended to cylindrical battery with excellent cycle behaviors. Such facile approach can provide guidance for large-scale production of high-performance hard carbons and provides the possibility of building practical SIBs with high energy density and durability.

16.
Angew Chem Int Ed Engl ; 63(41): e202407042, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39004938

RESUMO

Lithium-sulfur batteries (LiSBs) with high energy density still face challenges on sluggish conversion kinetics, severe shuttle effects of lithium polysulfides (LiPSs), and low blocking feature of ordinary separators to LiPSs. To tackle these, a novel double-layer strategy to functionalize separators is proposed, which consists of Co with atomically dispersed CoN4 decorated on Ketjen black (Co/CoN4@KB) layer and an ultrathin 2D Ti3C2Tx MXene layer. The theoretical calculations and experimental results jointly demonstrate metallic Co sites provide efficient adsorption and catalytic capability for long-chain LiPSs, while CoN4 active sites facilitate the absorption of short-chain LiPSs and promote the conversion to Li2S. The stacking MXene layer serves as a microscopic barrier to further physically block and chemically anchor the leaked LiPSs from the pores and gaps of the Co/CoN4@KB layer, thus preserving LiPSs within efficient anchoring-conversion reaction interfaces to balance the accumulation of "dead S" and Li2S. Consequently, with an ultralight loading of Co/CoN4@KB-MXene, the LiSBs exhibit amazing electrochemical performance even under high sulfur loading and lean electrolyte, and the outperforming performance for lithium-selenium batteries (LiSeBs) can also be achieved. This work exploits a universal and effective strategy of a double-layer functionalized separator to regulate the equilibrium adsorption-catalytic interface, enabling high-energy and long-cycle LiSBs/LiSeBs.

17.
Angew Chem Int Ed Engl ; 63(21): e202400406, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38491786

RESUMO

Diluents have been extensively employed to overcome the disadvantages of high viscosity and sluggish kinetics of high-concentration electrolytes, but generally do not change the pristine solvation structure. Herein, a weakly coordinating diluent, hexafluoroisopropyl methyl ether (HFME), is applied to regulate the coordination of Na+ with diglyme and anion and form a diluent-participated solvate. This unique solvation structure promotes the accelerated decomposition of anions and diluents, with the construction of robust inorganic-rich electrode-electrolyte interphases. In addition, the introduction of HFME reduces the desolvation energy of Na+, improves ionic conductivity, strengthens the antioxidant, and enhances the safety of the electrolyte. As a result, the assembled Na||Na symmetric cell achieves a stable cycle of over 1800 h. The cell of Na||P'2-Na0.67MnO2 delivers a high capacity retention of 87.3 % with a high average Coulombic efficiency of 99.7 % after 350 cycles. This work provides valuable insights into solvation chemistry for advanced electrolyte engineering.

18.
Angew Chem Int Ed Engl ; 63(42): e202410494, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39007424

RESUMO

Anion-reinforced solvation structure favors the formation of inorganic-rich robust electrode-electrolyte interface, which endows fast ion transport and high strength modulus to enable improved electrochemical performance. However, such a unique solvation structure inevitably injures the ionic conductivity of electrolytes and limits the fast-charging performance. Herein, a trade-off in tuning anion-reinforced solvation structure and high ionic conductivity is realized by the entropy-assisted hybrid ester-ether electrolyte. Anion-reinforced solvation sheath with more anions occupying the inner Na+ shell is constructed by introducing the weakly coordinated ether tetrahydrofuran into the commonly used ester-based electrolyte, which merits the accelerated desolvation energy and gradient inorganic-rich electrode-electrolyte interface. The improved ionic conductivity is attributed to the weakly diverse solvation structures induced by entropy effect. These enable the enhanced rate performance and cycling stability of Prussian blue||hard carbon full cells with high electrode mass loading. More importantly, the practical application of the designed electrolyte was further demonstrated by industry-level 18650 cylindrical cells.

19.
Angew Chem Int Ed Engl ; 63(16): e202318822, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372507

RESUMO

Nanoconfined polymer molecules exhibit profound transformations in their properties and behaviors. Here, we present the synthesis of a polymer-in-MOF single ion conducting solid polymer electrolyte, where polymer segments are partially confined within nanopores ZIF-8 particles through Lewis acid-base interactions for solid-state sodium-metal batteries (SSMBs). The unique nanoconfinement effectively weakens Na ion coordination with the anions, facilitating the Na ion dissociation from salt. Simultaneously, the well-defined nanopores within ZIF-8 particles provide oriented and ordered migration channels for Na migration. As a result, this pioneering design allows the solid polymer electrolyte to achieve a Na ion transference number of 0.87, Na ion conductivity of 4.01×10-4 S cm-1, and an extended electrochemical voltage window up to 4.89 V vs. Na/Na+. The assembled SSMBs (with Na3V2(PO4)3 as the cathode) exhibit dendrite-free Na-metal deposition, promising rate capability, and stable cycling performance with 96 % capacity retention over 300 cycles. This innovative polymer-in-MOF design offers a compelling strategy for advancing high-performance and safe solid-state metal battery technologies.

20.
Angew Chem Int Ed Engl ; 63(30): e202402946, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38696279

RESUMO

Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0 % after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5 % after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA