Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(15): 9927-34, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26509958

RESUMO

A multi-ion model taking into account the Stern layer effect and the surface chemistry reactions is developed for the first time to investigate the surface charge properties and electrophoresis of pH-regulated silica nanoparticles (NPs). The applicability of the model is validated by comparing its prediction to the experimental data of the electrophoretic mobility of silica NPs available from the literature. Results show that if the particle size is fixed, the Stern layer effect on the surface charge properties of the NP is notable at high pH and background salt concentration; however, that effect on the particle mobility is significant when pH is around neutrality and the salt concentration is medium high (ca. 0.07 M) because of the double-layer polarization effect. Moreover, if pH and the background salt concentration are fixed, the Stern layer effect on the zeta potential and electrophoretic mobility of the NP becomes more significant for smaller particle size. Neglecting the Stern layer effect could result in the overestimation of the zeta potential, surface charge density, and electrophoretic mobility of a NP on the order of several times.

2.
Phys Chem Chem Phys ; 16(4): 1545-53, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24306211

RESUMO

The behaviors of cat-anionic vesicles composed of dioctadecyldimethylammonium bromide (DODAB) and dihexadecyl phosphate (DHP) with varying lipid composition were investigated through the measurements of size, zeta potential and fluorescence polarization, morphological observations, determination of thermotropic phase behavior, cell viability assay, and examination of entrapment efficiency and colloid stability. DODAB is miscible with DHP in the bilayer domain, which expresses a non-ideal mixing characteristic. The DODAB-rich vesicles show a smaller particle size, higher positive zeta potential, lower main transition temperature, less angular structure, better storage stability, and higher encapsulation efficiency than the DHP-rich ones. Introduction of DODAB into DHP vesicles enhances the membrane fluidity in the ripple and liquid crystalline phases. The membrane fluidity of mixed DODAB-DHP vesicles with the near charge might have a significant effect on the survival of nontransformed human skin fibroblast Hs68 cells. The degree of the cytotoxicity of Hs68 cells is dominated mainly by the charge nature of DODAB-DHP vesicles with varying lipid composition. The results gathered provide necessary information for future drug/gene delivery applications.


Assuntos
Lipídeos/química , Lipídeos/farmacologia , Ânions/química , Ânions/farmacologia , Cátions/química , Cátions/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Organofosfatos/química , Tamanho da Partícula , Compostos de Amônio Quaternário/química , Relação Estrutura-Atividade , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 16(19): 24172-24190, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688027

RESUMO

Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.


Assuntos
Cobre , Peróxido de Hidrogênio , Rutênio , Microambiente Tumoral , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Animais , Camundongos , Humanos , Rutênio/química , Rutênio/farmacologia , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Peróxidos/química , Peróxidos/farmacologia , Linhagem Celular Tumoral , Fotoquimioterapia , Portadores de Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia
4.
Biochim Biophys Acta ; 1820(7): 1149-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22348919

RESUMO

BACKGROUND: Skin cancers are reportedly increasing worldwide. Developing novel anti-skin cancer drugs with minimal side effects is necessary to address this public health issue. Sinuleptolide has been demonstrated to possess anti-cancer cell activities; however, the mechanisms underlying the anti-skin cancer effects of 5-epi-sinuleptolide and sinuleptolide remain poorly understood. METHODS: Apoptosis cell, cell-cycle-related regulatory factors, and mitochondria- and death receptor-dependent caspase pathway in 5-epi-sinuleptolide-induced cell apoptosis were examined using SCC25 cells. RESULTS: 5-epi-Sinuleptolide inhibited human skin cancer cell growth more than did sinuleptolide. Treatment of SCC25 cells with 5-epi-sinuleptolide increased apoptotic body formation, and induced cell-cycle arrest during the G2/M phase. Notably, 5-epi-sinuleptolide up-regulated p53 and p21 expression and inhibited G2/M phase regulators of cyclin B1 and cyclin-dependent kinease 1 (CDK1) in SCC25 cells. Additionally, 5-epi-sinuleptolide induced apoptosis by mitochondria-mediated cytochrome c and Bax up-expression, down-regulated Bcl-2, and activated caspase-9 and -3. 5-epi-Sinuleptolide also up-regulated tBid, which is associated with up-regulation of tumor necrosis factor-α (TNF-α) and Fas ligand (FasL) and their cognate receptors (i.e., TNF-RI, TNF-R2 and Fas), downstream adaptor TNF-R1-associated death domain (TRADD) and Fas-associated death domain (FADD), and activated caspase-8 in SCC25 cells. CONCLUSIONS: The analytical results indicate that the death receptor- and mitochondria-mediated caspase pathway is critical in 5-epi-sinuleptolide-induced apoptosis of skin cancer cells. GENERAL SIGNIFICANCE: This is the first report suggesting that the apoptosis mediates the anti-tumor effect of 5-epi-sinuleptolide. The results of this study might provide useful suggestions for designing of anti-tumor drugs for skin cancer patients.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diterpenos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Sobrevivência Celular/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Imunofluorescência , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Células Tumorais Cultivadas
5.
Biochim Biophys Acta ; 1820(7): 1081-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22554915

RESUMO

BACKGROUND: Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood. METHODS: The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated. RESULTS: Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells. CONCLUSIONS: Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin. GENERAL SIGNIFICANCE: These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Caspases/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Citometria de Fluxo , Fluoruracila/administração & dosagem , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
6.
BMC Complement Altern Med ; 13: 237, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24070160

RESUMO

BACKGROUND: Alpinia oxyphylla is a common remedy in traditional Chinese medicine. Yakuchinone A is a major constituent of A. oxyphylla and exhibits anti-inflammatory, antitumor, antibacterial, and gastric protective activities. METHODS: Antioxidant and antitumor characteristics of yakuchinone A in skin cancer cells as well as novel mechanisms for the inhibition of adipocyte differentiation, cestocidal activities against Hymenolepis nana adults, and nematocidal activities against Anisakis simplex larvae are investigated. RESULTS: Yakuchinone A presents the ability of the removal of DPPH·and ABTS+ free radicals and inhibition of lipid peroxidation. Yakuchinone A suppresses intracellular lipid accumulation during adipocyte differentiation in 3 T3-L1 cells and the expressions of leptin and peroxisome proliferator-activated receptor γ (PPARγ). Yakuchinone A induces apoptosis and inhibits cell proliferation in skin cancer cells. The inhibition of cell growth by yakuchinone A is more significant for non-melanoma skin cancer (NMSC) cells than for melanoma (A375 and B16) and noncancerous (HaCaT and BNLCL2) cells. Treatment BCC cells with yakuchinone A shows down-regulation of Bcl-2, up-regulation of Bax, and an increase in cleavage poly (ADP-ribose) polymerase (PARP). This suggests that yakuchinone A induces BCC cells apoptosis through the Bcl-2-mediated signaling pathway. The anthelmintic activities of yakuchinone A for A. simplex are better than for H. nana. CONCLUSIONS: In this work, yakuchinone A exhibits antioxidative properties, anti-adipocyte differentiation, antitumor activity, and anthelmintic activities against A. simplex and H. nana.


Assuntos
Alpinia/química , Anti-Helmínticos/farmacologia , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Guaiacol/análogos & derivados , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Anisakis/efeitos dos fármacos , Anti-Helmínticos/química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Guaiacol/química , Guaiacol/farmacologia , Humanos , Hymenolepis nana/efeitos dos fármacos , Larva/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447509

RESUMO

Curcumin (Cur) is a beneficial phytochemical with numerous health advantages. However, its limited solubility in oil and poor stability hinder its potential for biomedical applications. In this study, we employed a mixture of food-grade Tween 60, a polymeric surfactant, and Span 60 to adjust the hydrophilic lipophilic balance number (HLBt) and prepared nanoemulsions (NEs) of coconut oil (Cc oil) as carriers for Cur. The effects of HLBt values, surfactant-to-oil ratio, and oil ratio on the physicochemical characteristics of the food-grade oil-NEs were investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, fluorescence polarization spectroscopy, and viscometry. Increasing the addition ratio of Tween 60 in the NEs, thereby increasing the HLBt, resulted in a reduction in NE size and an improvement in their storage stability. The temperature and size of the phase transition region of the NEs decreased with increasing HLBt. NEs with higher HLBt exhibited a disordering effect on the intra-NE molecular packing of Cc oil. NEs with high HLBt displayed low viscosity and demonstrated nearly Newtonian fluid behavior, while those with lower HLBt exhibited pseudoplastic fluid behavior. Cur was effectively encapsulated into the Cc oil-NEs, with higher encapsulation efficiency observed in NEs with higher HLBt values. Furthermore, the Cur remaining activity was significantly enhanced through encapsulation within stable NEs. The biocompatibility of the Cc oil-NEs was also demonstrated in vitro. In summary, this study highlights the preparation of stable NEs of Cc oil by adjusting the HLBt using Tween 60, facilitating effective encapsulation of Cur. These findings provide valuable insights for the development of Cur carriers with improved solubility, stability, and bioavailability.

8.
Biol Pharm Bull ; 35(12): 2198-203, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23207771

RESUMO

trans-Caffeic acid stearyl ester (TCASE) from the root cortex of Paeonia suffruticosa ANDREWS is a traditional medicinal herb that has several beneficial properties. However, the inhibitory effect of TCASE on melanogenesis has not been explored. In the cell viability assay, TCASE did not show a cytotoxic effect at a dose of 65 µM for 48 h in B16, HaCaT and Hs68 cells. TCASE considerably inhibits melanin synthesis, and reduces intracellular cyclic adenosine monophosphate (cAMP) levels, tyrosinase activity and L-3-(3,4-dihydroxyphenyl)-alanine (DOPA) oxidase activity in a concentration-dependent manner in the presence of α-melanocyte-stimulating hormone (α-MSH) in B16 cells, and the inhibition efficiency of TCASE exceeds that of ascorbic acid and arbutin. TCASE reduces melanocortin-1 receptor (MC1R), microphthalmia transcription factor (MITF), tyrosinase, tyrosinase-related protein-2 (TRP-2) and TRP-1 mRNA and protein levels in B16 cells. Based on the findings, TCASE is posited to inhibit melanogenesis signaling while suppressing cAMP levels and, subsequently, MC1R, MITF, tyrosinase, TRP-2 and TRP-1 down-regulation, resulting in the suppression of tyrosinase activity, DOPA oxidase activity and melanin synthesis.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Melaninas/biossíntese , Melanoma Experimental/tratamento farmacológico , Paeonia/química , Fitoterapia , alfa-MSH/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Ácidos Cafeicos/farmacologia , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Regulação para Baixo , Humanos , Melanoma Experimental/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais
9.
J Colloid Interface Sci ; 605: 500-512, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34343730

RESUMO

Herein, we report for the first time a facile strategy for the highly efficient (NH4)xCs1-xPbBr3 quantum dots (QDs). By modulating the amount of ammonium, (NH4)xCs1-xPbBr3 QDs with different photoluminescence (PL) quantum yields (QY) were synthesized. The results of X-ray diffraction and X-ray photoelectron spectroscopy showed that the crystal structure of (NH4)xCs1-xPbBr3 was altered by incorporation of NH4+ cations into the CsPbBr3 lattice. The (NH4)xCs1-xPbBr3 QDs showed enhanced PL QY, higher photostability, and long-term storage stability compared to CsPbBr3 QDs. Furthermore, (NH4)xCs1-xPbBr3 QDs could be conjugated with a photothermal dye (IR780) via a one-pot reaction using poly(styrene-co-maleic anhydride) and IR780-MPTS. To the best of our knowledge, the present work is the first attempt integrating perovskite QDs and phototherapeutic molecules into one system (abbreviated as PQD-IR780), demonstrating good water dispersibility and high photothermal conversion efficiency of 57.85%. In vitro experiments performed to examine subcellular uptake showed high fluorescence brightness was observed in HeLa, B16F1, and HepG2 cancer cells cultured with PQD-IR780. The results indicate that the internalization mechanism for uptaking of PQD-IR780 inside HeLa cells is energy-dependent and caveolin-mediated endocytosis. The in vitro cell viability assays and photothermal therapy revealed that PQD-IR780 showed good biocompatibility and can induce hyperthermia upon laser irradiation.


Assuntos
Pontos Quânticos , Sobrevivência Celular , Células HeLa , Humanos , Luminescência , Terapia Fototérmica
10.
Plant Foods Hum Nutr ; 66(3): 275-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21656165

RESUMO

Antioxidant properties of eight Paeonia suffruticosa (Ps) extracts (Ps-1 to Ps-8) were evaluated. The respective half maximally effective concentration (EC(50)) values of Ps-1 ~ 8 were 10.0, 9.8, 63.6, >100, 3.8, 85.1, 6.9, and 0.7 µg/ml for 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) radical scavenging efficiency and 22.9, 11.4, 53.1, >100, 7.5, 97.6, 43.7, 4.2 µg/ml for 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS·(+)) radical scavenging capacity. The Ps-8 exhibited high free radical scavenging capacity, ion-chelating ability, reducing power, and inhibition of lipid peroxidation, which may have been attributable to its abundant phenolic and flavonoid content. In Hs68 and B16 cells treated with 100 µg/ml Ps-1, Ps-3, Ps-4 and Ps-6, expressions of toxic activities were lower than those in cells treated with arbutin and ascorbic acid. The antimelanogenesis properties were also tested in B16 cells. Extract Ps-1, and particularly extract Ps-6, considerably inhibited cellular tyrosinase and 3,4-dihydroxyphenylalanine (DOPA) oxidase activity and also reduced melanin content in B16 cells by down-expression of melanocortin-1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related proteins-1 (TRP-1). The results suggest that P. suffruticosa extracts have antioxidant and antimelanogenesis activities with potential applications in cosmetic materials or food additives.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Melaninas/metabolismo , Paeonia/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/isolamento & purificação , Linhagem Celular , Quelantes/farmacologia , Di-Hidroxifenilalanina/metabolismo , Regulação para Baixo , Flavonoides/isolamento & purificação , Humanos , Interferon Tipo I/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Melanoma Experimental , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Fenóis/isolamento & purificação , Fitoterapia , Casca de Planta , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Proteínas da Gravidez/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo
11.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445743

RESUMO

The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding. The antibacterial activity, fast disintegration properties of the JFP/pullulan nanofiber were also confirmed by the zone of inhibition and UV spectrum studies. Hence, JFP/pullulan nanofibers could be a promising carrier to encapsulate hydrophobic drugs for fast-dissolving/disintegrating delivery applications.

12.
ACS Appl Bio Mater ; 4(7): 5650-5660, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006729

RESUMO

Combining phototherapy with the cancer cell metabolic pathway altering strategies, that is, glucose starvation, would be a promising approach to accomplish high curative efficiency of cancer treatment. Accordingly, herein, we sought to construct a multifunctional biomimetic hybrid nanoreactor by fastening nanozyme AuNPs (glucose oxidase activity) and PtNPs (catalase and peroxidase activity) and photosensitizer Indocyanine green (ICG) onto the polydopamine (PDA) surface (ICG/Au/Pt@PDA-PEG) to attain superior cancer cell killing efficiency though win-win cooperation between starvation therapy, phototherapy, and chemodynamic therapy. The as-synthesized ICG/Au/Pt@PDA-PEG has shown excellent light-to-heat conversion (photothermal therapy) and reactive oxygen species generation (photodynamic therapy) properties upon laser irradiation and also red-shifted ICG absorption (from 780 to 800 nm) and enhanced its photostability. Further, the ICG/Au/Pt@PDA-PEG NRs have reduced the solution glucose concentration and slightly increased solution oxygen levels and also enhanced 3,3',5,5'-tetramethylbenzidine oxidation in the presence of glucose through a cascade of enzymatic activities. The in vitro results demonstrated that the ICG/Au/Pt@PDA-PEG NRs have superior therapeutic efficacy against cancer cells via the cooperative effect between starvation/photo/chemodynamic therapies and not much toxicity to normal cells.


Assuntos
Nanopartículas Metálicas , Neoplasias , Biomimética , Linhagem Celular Tumoral , Glucose , Ouro , Verde de Indocianina/farmacologia , Nanotecnologia , Neoplasias/tratamento farmacológico
13.
Polymers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806031

RESUMO

Apigenin (Apig) is used as a model drug due to its many beneficial bio-activities and therapeutic potentials. Nevertheless, its poor water solubility and low storage stability have limited its application feasibility on the pharmaceutical field. To address this issue, this study developed nanoemulsions (NEs) using an anti-oxidative polymeric amphiphile, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), hydrogenated soy lecithin (HL), black soldier fly larvae (BSFL) oil, and avocado (AV) oil through pre-homogenization and ultrasonication method. Addition of TPGS (weight ratios 100 and 50% as compared to HL) into NEs effectively reduced particle size and phase transition region area of NEs with pure HL. Incorporation of Apig into NEs made particle size increase and provided a disorder effect on intraparticle molecular packing. Nevertheless, the encapsulation efficiency of NEs for Apig approached to about 99%. The chemical stability of Apig was significantly improved and its antioxidant ability was elevated by incorporation with BSFL oil and AV oil NEs, especially for NEs with single TPGS. NEs with single TPGS also exhibited the best Apig skin deposition. For future application of topical Apig delivery, NEs-gel was formed by the addition of hyaluronic acid (HA) into NEs. Their rheological characteristics were dominated by the surfactant ratios of HL to TPGS.

14.
Exp Dermatol ; 19(8): 742-50, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20482617

RESUMO

The antioxidant activities of vanillin and vanillic acid isolated from Origanum vulgare are investigated. These compounds may serve as agents for antimelanogenesis. Vanillic acid is a stronger antioxidant than vanillin, in terms of free radical scavenging activity, reducing power and inhibition of lipid peroxidation. The inhibition of cellular reactive oxygen species (ROS) in H(2)O(2)-treated BNLCL2 cells by vanillic acid exceeds that of ascorbic acid (AA) or trolox. In B16F0 cells stimulated with alpha-melanocyte-stimulating hormone (alpha-MSH), vanillic acid reduced cellular tyrosinase activity, DOPA oxidase and melanin contents, as well as down-regulated expressions of melanocortin-1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related proteins 2 (TRP-2) and TRP-1. Vanillin did not express inhibition of tyrosinase activity. These results supported that vanillic acid is a significantly stronger antioxidant than vanillin and exhibited stronger antimelanogenesis performance because of the structural presence of the carboxyl group.


Assuntos
Antioxidantes/farmacologia , Benzaldeídos/farmacologia , Melaninas/metabolismo , Origanum , Extratos Vegetais/farmacologia , Ácido Vanílico/farmacologia , alfa-MSH/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Melaninas/antagonistas & inibidores , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
15.
J Nat Prod ; 73(11): 1767-74, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-20973550

RESUMO

Antioxidant and antimelanogenesis activities of protocatechuic acid (1) from Origanum vulgare (oregano) were investigated. The antioxidative capacity of 1 was confirmed from its free-radical-scavenging activities, inhibition of lipid peroxidation, and suppression of reactive oxygen species in H(2)O(2)-induced BNLCL2 cells. The inhibition by 1 of tyrosinase and DOPA oxidase activity and melanin production was possibly related to the down-regulation of melanocortin-1 receptor, microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related proteins-2, and tyrosinase-related proteins-1 expression in α-melanocyte-stimulating hormone-induced B16 cells. After a gel containing 1 was applied to mice, the values of L* slightly increased, and a* and erythema-melanin levels of skin were reduced by comparing the values of untreated control groups, indicating 1 can reduce melanin production. These results suggest that 1 may act as an effective quencher of oxidative attackers with antimelanogenesis properties.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Hidroxibenzoatos/isolamento & purificação , Hidroxibenzoatos/farmacologia , Melanócitos/efeitos dos fármacos , Origanum/química , Pigmentação da Pele/efeitos dos fármacos , Animais , Antioxidantes/química , Benzotiazóis/farmacologia , Compostos de Bifenilo/farmacologia , Medicamentos de Ervas Chinesas/química , Sequestradores de Radicais Livres/química , Hidroxibenzoatos/química , Melaninas/metabolismo , Camundongos , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Picratos/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Ácidos Sulfônicos/farmacologia , alfa-MSH/efeitos dos fármacos , alfa-MSH/metabolismo
16.
Appl Biochem Biotechnol ; 191(1): 331-345, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31853873

RESUMO

Insect-based biorefinery is seen as a potential alternative approach to manufacturing foods, feeds, and fuel because of the increasing demand for renewable and sustainable products. Insect oil and protein are the two major components that can be quantitatively obtained from insect farming. However, very few attempts have been conducted to utilize insect oil for the production of value-added products. In this study, the oil extracted from the black soldier fly (Hermetia illucens) larvae (BSFL) was used as a novel feedstock for preparing nano-emulsions. The nano-emulsions were prepared with BSFL oil, hydrogenated lecithin (HL), and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in water using pre-homogenization followed by ultrasonication. The morphology and the particle size of nano-emulsions were affected by ratios of HL to TPGS. Moreover, the nano-emulsions showed a nearly Newtonian liquid behavior and the presence of TPGS was able to improve the storage stability of HL nano-emulsions. The addition of TPGS could eliminate the phase transition region of HL nano-emulsions but did not provide a significant change for the molecular mobility in the HL nano-emulsions. In summary, the BSFL oil could be used as a renewable feedstock for formulating nano-emulsions from the aspect of high value-added applications and physicochemical characteristics of the nano-emulsions could be adjusted by the mixed surfactant ratio, surfactant to oil ratio, and oil content. Graphical Abstract The physicochemical characteristics and optimization of nano-emulsions based on black soldier fly larvae oil were investigated.


Assuntos
Dípteros/química , Lecitinas/química , Tensoativos/química , Vitamina E/química , Animais , Emulsões , Larva
17.
Appl Biochem Biotechnol ; 191(1): 360-375, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31879860

RESUMO

The polysaccharides extracted from the achenes of jelly fig, Ficus awkeotsang Makino, were mainly composed of low methyl pectin and used as a novel shell material for encapsulating lipophilic bioactives in the core of microcapsule. The polysaccharide microcapsules with oil core were prepared using a novel acrylic-based millifluidic device developed in this study. To investigate the physiochemical properties of and find the suitable formula of polysaccharide shells, the films casted with jelly fig polysaccharide were thoroughly characterized. For the preparation of microcapsules, the millifluidic device was optimized by controlling the flow rate to obtain uniform spherical shape with a core diameter of 1.4-1.9 mm and the outer diameter of 2.1-2.8 mm. The encapsulation efficiency was around 90%, and the microcapsules displayed a clear boundary between the polysaccharide shell and oil core. Encapsulation of curcumin in the microcapsules was prepared to test the applicability of the device and processes developed in this study, and the results showed that the microencapsulation could enhance the stability of curcumin against external environment. Overall, the results suggested that the jelly fig polysaccharides and the developed millifluidic device can be useful for the preparation of core-shell microcapsules for encapsulation of lipophilic bioactives.


Assuntos
Curcumina/química , Ficus/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Pectinas , Cápsulas , Pectinas/química , Pectinas/isolamento & purificação
18.
Chem Res Toxicol ; 22(12): 2017-28, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19928967

RESUMO

In this study, aloe-emodin (AE) was less cytotoxic to human noncancerous skin cells (premalignant keratinocytic HaCaT and fibroblast Hs68) than to nonmelanoma cancer cells (epidermoid carcinoma A431 and head and neck squamous cell carcinoma SCC25). Notably, AE induced apoptosis by up-regulating tumor necrosis factor-alpha and Fas ligand and their cognate receptors, downstream adaptor TNF-R1-associated death domain and Fas-associated death domain, and activated caspase-8 in A431 and SCC25 cells. Moreover, AE up-regulated p53, increased intracellular reactive oxygen species levels, depleted intracellular-reduced GSH, up-regulated cytochrome c and Bax, down-regulated Bcl-2, and activated caspase-9 and -3. The combinatory use of AE and 5-fluorouracil (5-Fu) achieved significantly more cell death in A431 and SCC25 cells than only the use of AE or 5-Fu, likely via regulation of caspase-8, -9, and -3 expressions. Incorporating AE into the liposomal formulation accelerated cell death of A431 and SCC25 cells within a short time. Furthermore, skin permeation profiles of drug suggest that the liposomal formulation enhances transdermal delivery of AE. Experimental data demonstrate the feasibility of applying liposome to deliver AE in clinical therapy.


Assuntos
Antraquinonas/toxicidade , Antineoplásicos/toxicidade , Neoplasias Cutâneas/metabolismo , Administração Cutânea , Antraquinonas/administração & dosagem , Antraquinonas/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fluoruracila/farmacologia , Humanos , Lipossomos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/enzimologia , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
ACS Appl Mater Interfaces ; 11(33): 29838-29848, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31356047

RESUMO

A 3D network composed of V2O5 nanofibers was manufactured on a novel conductive printing paper [urea-LiClO4-PVA (ULP) deep eutectic solvent gel-doped graphite/printing paper, U-paper] for use as electrodes linked with a ULP neutral gel electrolyte for 3D network V2O5 wearable symmetric pseudocapacitors (WSSCs). The function of the ULP gel is not only that it can be doped into the conductive ink to decrease the resistance of the conductive printing paper but also that it increases the stability of V2O5-based electrodes. Moreover, 3D network V2O5 WSSCs containing the ULP gel can support high operating voltages of 4.0 V with great specific capacitance (160 F/g) and offer a high energy density (355 W h/kg at 0.2 kW/kg). The 3D network V2O5 WSSCs exhibit a superior cycling stability/durability after 5000 cycles (capacitance retention of ∼91%). Operando X-ray absorption spectroscopy experiments show the reversibility and pseudocapacitive properties of V2O5 from the ULP gel and offer the information of the oxidation states of vanadium during charge-discharge cycles. The 3D network V2O5 WSSCs with the ULP gel electrolyte show great potential prospective candidates for smarter 3D wearable energy-storage devices and Internet-of-Things applications.

20.
Phytomedicine ; 63: 153005, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302316

RESUMO

BACKGROUND: 8-Hydroxyquinoline derivatives have highly sensitive fluorescent chemosensors for metal ions, which are associated with anti-oxidant, anti-tumor and anti-HIV-1 properties. Head and neck squamous cell carcinoma (HNSCC) is associated with a high rate of mortality and novel anti-HNSCC drugs must be developed. Therefore, effective chemotherapy agents are required to address this public health issue. HYPOTHESIS/PURPOSE: The aim of this study was to investigate the inhibitory effect of tris(8-hydroxyquinoline)iron (Feq3) on the HNSCC and the underlying mechanism. STUDY DESIGN/METHODS: A novel 8-hydroxyquinoline derivative, Feq3, was synthesized. The cell viabilities were analyzed using MTT reagent. Apoptosis and the cell cycle distributions were determined by flow cytometer. Reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, western blot, MitoSOX and CellROX stain assay were used to study the mechanism of Feq3. Feq3 combined with antioxidants NAC (N-acetylcysteine) and BSO (buthionine sulfoximine) measured the cell viability and intracellular ROS. RESULTS: Feq3 induced the death of HNSCC cells and caused them to exhibit the morphological features of apoptosis. Feq3 also induced apoptosis of SCC9 cells by cell cycle arrest during the G2/M phase and the induced arrest of SCC25 cells in the G0/G1 and G2/M phases, which was associated with decreased cyclin B1/cdc2 and cyclin D/cdk4 expressions. Feq3 increases reactive oxygen species (ROS) and reduces glutathione (GSH) levels, and responds to increased p53 and p21 expressions. Feq3 induced apoptosis by mitochondria-mediated Bax and cytochrome c up-expression and down-expression Bcl-2. Feq3 also up-regulated tBid, which interacts with the mitochondrial pathway and tumor necrosis factor-α (TNF-α)/TNF-Rs, FasL/Fas, and TNF-related apoptosis inducing ligand receptors (TRAIL-Rs)/TRAIL-dependent caspases apoptotic signaling pathway in HNSCC cells. However, Feq3 activates Fas but not FasL in SCC25 cells. Feq3 arrests the growth of HNSCC cells and is involved in the mitochondria- and death receptor (DR)-mediated caspases apoptotic pathway. CONCLUSION: This study is the first to suggest that apoptosis mediates the anti-HNSCC of Feq3. Feq3 has potential as a cancer therapeutic agent against HNSCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Hidroxiquinolinas/farmacologia , Compostos de Ferro/farmacologia , Ferro/química , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/farmacologia , Apoptose/fisiologia , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Proteína Ligante Fas/metabolismo , Glutationa/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Compostos de Ferro/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA