Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(11): 14602-14614, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32941657

RESUMO

Melanocyte survival is mediated by diverse signaling pathways. However, the molecular mechanisms they use and molecules that they target are incompletely understood. Here, we show that melanocyte survival is mediated by diverse, nonredundant signaling pathways, including ERK1/2, AKT, PKA, and PKC. Each of these pathways is exerting prosurvival effects by phosphorylating the BAD. While Ser112-BAD phosphorylation is regulated by pERK, pPKA and pPKC, Ser136 and Ser155 phosphorylation are exclusively controlled by pAKT and pPKA, respectively. Inhibition of these pathways individually resulted in only modest apoptosis; however, most significant apoptosis, as a result of BAD dephosphorylation, was seen when all pathways were inhibited concurrently. BAD phosphorylation was essential for survival of melanocytes as cells expressing phosphorylation-deficient BAD were not rescued by any of the identified pathway. Furthermore, melanocytes became insensitive to kinase inhibitor-induced apoptosis when BAD expression was knocked down by BAD-shRNA. Overexpression of BAD in melanocytes stimulated faster apoptosis in response to kinase inhibitors. Taken together, our results show that BAD is acting as a convergence point for diverse survival pathways in melanocytes. Understanding the molecular mechanisms of melanocyte survival provides fundamental new insights into physiological mechanisms involved in the development of various melanocyte pathologies such as melanoma and vitiligo.


Assuntos
Apoptose , Melanócitos/metabolismo , Transdução de Sinais , Proteína de Morte Celular Associada a bcl/metabolismo , Sobrevivência Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33529170

RESUMO

The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti-MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2-specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Camelus/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , COVID-19/imunologia , Camelus/virologia , Reações Cruzadas , Epitopos , Feminino , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia
3.
Oxid Med Cell Longev ; 2019: 2841814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871544

RESUMO

Oxidative stress is known to induce melanocyte death, but the underlying mechanisms are incompletely understood. To identify oxidative stress-induced global gene expression changes in melanocytes, we treated PIG1 melanocytes with H2O2 in a dose- and time-dependent manner and performed RNA-seq. This approach allowed us to capture the events occurring early as well as late phase after treatment with H2O2. Our bioinformatics analysis identified differentially expressed genes involved in various biological processes of melanocytes which are known to contribute to the vitiligo development, such as apoptosis, autophagy, cell cycle regulation, cell adhesion, immune and inflammatory responses, melanocyte pluripotency, and developmental signaling such as WNT and NOTCH pathways. We uncovered several novel genes that are not previously described to be involved in melanocytic response to stress nor in vitiligo pathogenesis. Quantitative PCR and western blot analysis of selected proteins, performed on PIG1 and primary human epidermal melanocytes, confirmed the RNA-seq data. Interestingly, we discovered an aberrant regulation of several transcription factors that are involved in diabetes, neurological, and psychiatric diseases, all of which are comorbid conditions in patients with vitiligo. Our results may lead to a better understanding of the molecular mechanisms underlying vitiligo pathogenesis and help developing new drug targets for effective treatment.


Assuntos
Melanócitos/metabolismo , Vitiligo/metabolismo , Vitiligo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Biologia Computacional , Humanos , Peróxido de Hidrogênio/farmacologia , Melanócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Cell Death Dis ; 8(6): e2844, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569785

RESUMO

Cancer stem cells (CSCs) are increasingly considered to be responsible for tumor initiation, metastasis and drug resistance. The drug resistance mechanisms activated in CSCs have not been thoroughly investigated. Although neuropeptides such as vasoactive intestinal peptide (VIP) can promote tumor growth and activate antiapoptotic signaling in differentiated cancer cells, it is not known whether they can activate antiapoptotic mechanisms in CSCs. The objectives of this study are to unravel the cytoprotective effects of neuropeptides and identify antiapoptotic mechanisms activated by neuropeptides in response to anticancer drug treatment in CSCs. We enriched and purified CSCs (CD44+/high/CD24-/low or CD133+ population) from breast and prostate cancer cell lines, and demonstrated their stemness phenotype. Of the several neuropeptides tested, only VIP could protect CSCs from drug-induced apoptosis. A functional correlation was found between drug-induced apoptosis and dephosphorylation of proapoptotic Bcl2 family protein BAD. Similarly, VIP-induced cytoprotection correlated with BAD phosphorylation at Ser112 in CSCs. Using pharmacological inhibitors and dominant-negative proteins, we showed that VIP-induced cytoprotection and BAD phosphorylation are mediated via both Ras/MAPK and PKA pathways in CSCs of prostate cancer LNCaP and C4-2 cells, but only PKA signaling was involved in CSCs of DUVIPR (DU145 prostate cancer cells ectopically expressing VIP receptor) and breast cancer MCF7 cells. As each of these pathways partially control BAD phosphorylation at Ser112, both have to be inhibited to block the cytoprotective effects of VIP. Furthermore, VIP is unable to protect CSCs that express phosphorylation-deficient mutant-BAD, suggesting that BAD phosphorylation is essential. Thus, antiapoptotic signaling by VIP could be one of the drug resistance mechanisms by which CSCs escape from anticancer therapies. Our findings suggest the potential usefulness of VIP receptor inhibition to eliminate CSCs, and that targeting BAD might be an attractive strategy for development of novel therapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Proteína de Morte Celular Associada a bcl/genética , Antineoplásicos/farmacologia , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Niacinamida/análogos & derivados , Niacinamida/antagonistas & inibidores , Niacinamida/farmacologia , Compostos de Fenilureia/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/genética , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Sorafenibe , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteína de Morte Celular Associada a bcl/antagonistas & inibidores , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA