Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 76(2): 300-320, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351074

RESUMO

In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.


Assuntos
Arilamina N-Acetiltransferase , Doenças Metabólicas , Doenças Mitocondriais , Humanos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Especificidade por Substrato , Doenças Metabólicas/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico
2.
Biochemistry ; 62(14): 2093-2097, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37318062

RESUMO

There are two human arylamine N-acetyltransferases (NAT1 and NAT2) that have evolved separately and differ in their substrate specificity and tissue localization. In addition to its acetyltransferase activity, NAT1 can hydrolyze acetyl coenzyme A to coenzyme A in the presence of folate. Here, we show that NAT1 is rapidly inactivated at temperatures above 39 °C whereas NAT2 is more stable. NAT1 acetyltransferase activity is also rapidly lost in whole cells at a rate similar to that of recombinant protein, suggesting it is not protected by intracellular chaperones. By contrast, the hydrolase activity of NAT1 is resistant to heat-induced inactivation, in part because folate stabilizes the protein. Heat generated by mitochondria following the dissipation of the inner membrane potential was sufficient to inactivate NAT1 in whole cells. Within the physiological range of core body temperatures (36.5-37.5 °C), NAT1 acetyltransferase activity decreased by 30% while hydrolase activity increased by >50%. This study demonstrates the thermal regulation of NAT1, but not NAT2, and suggests that NAT1 may switch between an acetyltransferase and a hydrolase within a narrow temperature range in the presence of folate.


Assuntos
Arilamina N-Acetiltransferase , Humanos , Arilamina N-Acetiltransferase/metabolismo , Temperatura , Acetil-CoA Hidrolase , Acetiltransferases/metabolismo , Ácido Fólico
3.
Biochem Pharmacol ; 200: 115020, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358480

RESUMO

Human arylamine N-acetyltransferase 1 (NAT1) encodes a drug-metabolising enzyme that plays a role in chemical-associated cancer risk, cancer cell survival and mitochondrial function. Its expression and protein activity are regulated by transcriptional, translational, and post-translational processes, including microRNAs such as miR-1290. Several studies have shown the presence of multiple polyadenylation sites in the NAT1 gene. However, their role in NAT1 expression is poorly understood. Here, we have investigated the genetic sequence of the NAT1 gene in human cell lines, peripheral blood mononuclear cells and breast tumour tissue. We identified five potential polyadenylation signals, two of which carry known single nucleotide polymorphism that affect site usage. Cells that are homozygous for adenine at base 1642, the most distal polyadenylation site, use this site whereas those homozygous for cytosine at base 1642 could not. We also found that the presence of adenine at base 1642 is associated with the NAT1*10 haplotype. Because the putative binding site for miR-1290 is located between the last two polyadenylation sites, we hypothesised that cells that do not use the most distal site will be unaffected by miR-1290. However, this was not the case. NAT1 activity was positively correlated with miR-1290, and induction of miR-1290 in SH-SY5Y cells was associated with induction, not inhibition, of NAT1 activity. The use of PolyA1264 or PolyA1642 did not alter NAT1 activity following ectopic expression of a miR-1290 mimic. These results suggest that the role of miR-1290 in the regulation of NAT1 activity is more complex than previously reported.


Assuntos
Arilamina N-Acetiltransferase , MicroRNAs , Adenina , Arilamina N-Acetiltransferase/genética , Humanos , Isoenzimas/genética , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , Poliadenilação , Regiões não Traduzidas
4.
Cancer Lett ; 502: 189-199, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278499

RESUMO

Tissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies. Induction of hypoxia inducible factors (HIFs) mediates many proteomic and genomic changes associated with tumor hypoxia. In breast cancers, HIFs not only predict poor prognosis, but also promote metastasis and drug resistance. Several studies have proposed HIF-1α as a druggable target in drug-resistant breast cancers, leading to the synthesis and development of small molecule inhibitors. Disappointingly, however, none of these small molecule inhibitors have progressed to clinical use. In this review, we briefly discuss the role of HIF-1α in breast cancer drug resistance and summarize the current and future approaches to targeting this transcription factor in breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Hipóxia Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA