Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cancer Sci ; 115(3): 963-973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226414

RESUMO

Ectopic activation of rearranged during transfection (RET) has been reported to facilitate lineage differentiation and cell proliferation in different cytogenetic subtypes of acute myeloid leukemia (AML). Herein, we demonstrate that RET is significantly (p < 0.01) upregulated in AML subtypes containing rearrangements of the lysine methyltransferase 2A gene (KMT2A), commonly referred to as KMT2A-rearranged (KMT2A-r) AML. Integrating multi-epigenomics data, we show that the KMT2A-MLLT3 fusion induces the development of CCCTC-binding (CTCF)-guided de novo extrusion enhancer loop to upregulate RET expression in KMT2A-r AML. Based on the finding that RET expression is tightly correlated with the selective chromatin remodeler and mediator (MED) proteins, we used a small-molecule inhibitor having dual inhibition against RET and MED12-associated cyclin-dependent kinase 8 (CDK8) in KMT2A-r AML cells. Dual inhibition of RET and CDK8 restricted cell proliferation by producing multimodal oxidative stress responses in treated cells. Our data suggest that epigenetically enhanced RET protects KMT2A-r AML cells from oxidative stresses, which could be exploited as a potential therapeutic strategy.


Assuntos
Rearranjo Gênico , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proto-Oncogenes , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-ret/genética
2.
Haematologica ; 109(8): 2606-2618, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385272

RESUMO

Multiple myeloma (MM) remains incurable due to disease relapse and drug resistance. Notch signals from the tumor microenvironment (TME) confer chemoresistance, but the cellular and molecular mechanisms are not entirely understood. Using clinical and transcriptomic datasets, we found that NOTCH3 is upregulated in CD138+ cells from newly diagnosed MM (NDMM) patients compared to healthy individuals and increased in progression/relapsed MM (PRMM) patients. Further, NDMM patients with high NOTCH3 expression exhibited worse responses to bortezomib (BOR)-based therapies. Cells of the TME, including osteocytes, upregulated NOTCH3 in MM cells and protected them from apoptosis induced by BOR. NOTCH3 activation (NOTCH3OE) in MM cells decreased BOR anti-MM efficacy and its ability to improve survival in in vivo myeloma models. Molecular analyses revealed that NDMM and PRMM patients with high NOTCH3 exhibit CXCL12 upregulation. TME cells upregulated CXCL12 and activated the CXCR4 pathway in MM cells in a NOTCH3-dependent manner. Moreover, genetic or pharmacologic inhibition of CXCL12 in NOTCH3OE MM cells restored sensitivity to BOR regimes in vitro and in human bones bearing NOTCH3OE MM tumors cultured ex vivo. Our clinical and preclinical data unravel a novel NOTCH3-CXCL12 pro-survival signaling axis in the TME and suggest that osteocytes transmit chemoresistance signals to MM cells.


Assuntos
Quimiocina CXCL12 , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo , Receptor Notch3 , Transdução de Sinais , Microambiente Tumoral , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Humanos , Receptor Notch3/metabolismo , Receptor Notch3/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Linhagem Celular Tumoral , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Bortezomib/farmacologia , Bortezomib/uso terapêutico
3.
J Chem Phys ; 149(16): 164704, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384684

RESUMO

The power conversion efficiency of perovskite solar cells can be significantly improved if recombination losses and hysteresis effects, often caused by the presence of structural and chemical defects present at grain boundaries and interfaces, can be minimized during the processing of photoactive layers. As a crucial first step to address this issue, we performed density functional theory calculations to evaluate the electronic structure of the energetically favored (110) perovskite surface in the presence of the widely reported IPb antisite defects. Our calculations indicate that the nature of trap states formed is different for the perovskite surface with exposed methylammonium (MAI) and lead iodide (PbI2) terminating groups. While, in MAI terminated surfaces, IPb antisite defects lead to shallow states close to the valence band, both deep and shallow states are created in the bandgap region in the PbI2 terminated surface. Furthermore, we determined contribution from individual atoms to the trap states and inferred that the trap states originate from the clusters of iodine atoms that are formed near the defect site. The exact nature of the defect state is strongly correlated with the atomic structure of these clusters and can be potentially tuned by controlling the processing conditions of the perovskite film.

4.
Anal Biochem ; 458: 58-60, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24780222

RESUMO

In this work we evaluate the interaction of two optogenetic protein variants (CIB1, CIBN) with their complementary protein CRY2 by single-molecule tools in cell-free extracts. After validating the blue light induced co-localization of CRY2 and CIB1/N by Förster resonance energy transfer (FRET) in live cells, a fluorescence correlation spectroscopy (FCS) based method was developed to quantitatively determine the in vitro association of the extracted proteins. Our experiments suggest that CIB1, in comparison with CIBN, possesses a better coupling efficiency with CRY2 due to its intact protein structure and lower diffusion rate within 300s detection window.


Assuntos
Proteínas de Arabidopsis/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Criptocromos/análise , Transferência Ressonante de Energia de Fluorescência , Microscopia Eletrônica de Varredura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha Fluorescente
5.
Toxicol Sci ; 199(2): 289-300, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38518092

RESUMO

Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH's ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.


Assuntos
Metilação de DNA , Células Th1 , Tricloroetileno , Animais , Tricloroetileno/toxicidade , Metilação de DNA/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Feminino , Masculino , Camundongos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos MRL lpr , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon gama/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/genética , Epigênese Genética/efeitos dos fármacos , Autoimunidade/efeitos dos fármacos
6.
Appl Microbiol Biotechnol ; 97(13): 5965-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23546420

RESUMO

Nanosized elemental sulfur (ES) is already reported to exert superior antimicrobial efficacy than micron-sized ES, which encourages their use in drugs and therapeutics. The aim of the present study is to explore the possible route and mode of antimicrobial action of orthorhombic (α-SNPs) and monoclinic (ß-SNPs) allotropes of sulfur, respectively, at their nano-dimensions. The antimicrobial efficacy of α- and ß-SNPs was determined against both the conventionally ES-resistant and ES-susceptible fungi and bacteria. Both the SNPs inhibited the microbial growth, irrespective of their resistance profile to ES and caused significant deformities on the microbial cell surfaces. However, the extent of antimicrobial efficacy was found to be optimum for α-SNPs, which can be attributed to their size, shape, and surface modification. Subsequent transcript profiling, metabolite profiling, and enzymatic analyses revealed that α- and ß-SNPs impaired a cluster of mitochondrial enzymes involved in cellular respiration and oxidative phosphorylation. ES and SNPs stress were found to elicit the NADPH-dependent glutathione reductase mediated ES-detoxification response in fungi and caused them to undertake the glyoxylate shunt in favor of energy conservation. A simultaneous study was also undertaken to assess the biocompatible or bio-adverse properties of SNPs in terms of their cytotoxic and genotoxic effects against the human derived lung fibroblast cell line (MRC-5). The present study hence explores the antimicrobial physiology of two novel functional materials and demonstrates their compatibility as a future putative antimicrobial drug.


Assuntos
Anti-Infecciosos/metabolismo , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Metaboloma , Nanopartículas/metabolismo , Enxofre/metabolismo , Transcriptoma , Anti-Infecciosos/toxicidade , Bactérias/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fungos/química , Fungos/genética , Fungos/crescimento & desenvolvimento , Humanos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/toxicidade , Enxofre/toxicidade
7.
J Environ Sci Health B ; 48(7): 559-69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23581688

RESUMO

This is a report of an experimental study on a nanoencapsulation of the organophosphate acephate. Acephate was encapsulated in polyethylene glycol, using a simple, easy-to-replicate method that required no special equipment or conditions. The nanoencapsulation (nanoacephate) was characterized and its bioefficacy as compared to the regular commercial acephate was tested. The biosafety of the new compound was also tested on a murine model. Our new nanoencapsulation scored over the regular variety on all counts. It was found to successfully incorporate the active pesticidal component, acephate and this compound retained greater functional integrity over time as a nanoencapsulation. It was significantly more efficacious than the regular variety. It was biosafe when tested on murine model. We have reason to believe that this nanoencapsulation would allow the use of an organophosphate in a more targeted manner, thereby making it a cost-effective and eco-friendly alternative to the regular variety in use now.


Assuntos
Portadores de Fármacos/química , Inseticidas/toxicidade , Nanopartículas/química , Neurotoxinas/farmacologia , Organofosfatos/toxicidade , Compostos Organotiofosforados/toxicidade , Fosforamidas/toxicidade , Animais , Bioensaio , Química Farmacêutica , Feminino , Insetos/efeitos dos fármacos , Insetos/fisiologia , Inseticidas/química , Camundongos , Neurotoxinas/química , Organofosfatos/química , Compostos Organotiofosforados/química , Fosforamidas/química , Polietilenoglicóis/química
8.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899866

RESUMO

Overexpression of S100B is routinely used for disease-staging and for determining prognostic outcomes in patients with malignant melanoma. Intracellular interactions between S100B and wild-type (WT)-p53 have been demonstrated to limit the availability of free WT-p53 in tumor cells, inhibiting the apoptotic signaling cascade. Herein, we demonstrate that, while oncogenic overexpression of S100B is poorly correlated (R < 0.3; p > 0.05) to alterations in S100B copy number or DNA methylation in primary patient samples, the transcriptional start site and upstream promoter of the gene are epigenetically primed in melanoma cells with predicted enrichment of activating transcription factors. Considering the regulatory role of activating transcription factors in S100B upregulation in melanoma, we stably suppressed S100b (murine ortholog) by using a catalytically inactive Cas9 (dCas9) fused to a transcriptional repressor, Krüppel-associated box (KRAB). Selective combination of S100b-specific single-guide RNAs and the dCas9-KRAB fusion significantly suppressed expression of S100b in murine B16 melanoma cells without noticeable off-target effects. S100b suppression resulted in recovery of intracellular WT-p53 and p21 levels and concomitant induction of apoptotic signaling. Expression levels of apoptogenic factors (i.e., apoptosis-inducing factor, caspase-3, and poly-ADP ribose polymerase) were altered in response to S100b suppression. S100b-suppressed cells also showed reduced cell viability and increased susceptibility to the chemotherapeutic agents, cisplatin and tunicamycin. Targeted suppression of S100b therefore offers a therapeutic vulnerability to overcome drug resistance in melanoma.


Assuntos
Melanoma , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Apoptose , Melanoma/patologia , Regiões Promotoras Genéticas , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Clin Epigenetics ; 15(1): 18, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737807

RESUMO

BACKGROUND: Oncogenic overexpression of integrin-ß7 (ITGB7) in cases of high-risk multiple myeloma (MM) was reported to promote enhanced interactions between neoplastic plasma-B cells and stromal cells to develop cell-adhesion mediated drug resistance. METHODS: Expression profiles of adhesion related genes were analyzed in a cohort of MM patients containing major IgH translocations or hyperdiploidies (HY), diagnosed at the premalignant monoclonal gammopathy of undetermined significance (MGUS; n = 103), smoldering multiple myeloma; (SMM; n = 190) or MM (MM; n = 53) stage. Differential expression was integrated with loci-specific alterations in DNA-methylation and chromatin marks in MM patients. A CRISPR-based targeted induction of DNA-methylation at the ITGB7 super-enhancer (SE) in MM.1S cells was employed to intersect the impact of cis-regulatory elements on ITGB7 expression. RESULTS: ITGB7 was significantly (p < 0.05) upregulated in patients with t(14;16) and t(14;20) subgroups in all MGUS, SMM and MM stages, but sporadically upregulated in t(4;14) subgroup at the MM stage. We demonstrate a predetermined enhancer state on ITGB7 in primary-B cells that is maintained under bivalent chromatin, which undergoes a process of chromatin-state alterations and develops into an active enhancer in cases of the t(4;14) subgroup or SE in cases of the t(14;16) subgroup. We also demonstrate that while targeted induction of DNA-methylation at the ITGB7-SE further upregulated the gene, inhibition of ITGB7-SE-associated transcription factor bromodomain-4 downregulated expression of the gene. CONCLUSIONS: Our findings suggest an epigenetic regulation of oncogenic overexpression of ITGB7 in MM cells, which could be critical in MM progression and an attractive therapeutic target.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Cromatina/genética , Análise Citogenética , Progressão da Doença , DNA/metabolismo , Metilação de DNA , Epigênese Genética , Cadeias beta de Integrinas , Integrinas/genética , Integrinas/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia
10.
J Antimicrob Chemother ; 67(5): 1134-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22269475

RESUMO

OBJECTIVES: To elucidate the antibacterial efficacy of chemically synthesized and custom-made sulphur nanoparticles (SNPs) of two different sizes and surface modifications against a number of multidrug-resistant Gram-negative bacilli (GNB) harbouring the New Delhi metallo-ß-lactamase 1 enzyme (NDM-1). METHODS: Antimicrobial susceptibility of the isolates was determined. The strains were evaluated for the presence of carbapenemases, ß-lactamases, 16S rRNA methylases and integrons. Chemically synthesized, polyethylene-glycol (PEG)-stabilized SNPs of 10 nm and custom-made non-capped SNPs of 60 nm were physicochemically characterized and evaluated for their antibacterial efficacy against multidrug-resistant GNB using the agar dilution method (ADM) and the broth microdilution method (BMD). The cytotoxicity of the chemically synthesized SNPs was evaluated with a human-derived hepatoma (HepG2) cell line using a WST-1 assay kit. RESULTS: All isolates were multidrug-resistant and possessed NDM-1 along with other ß-lactamases, 16S rRNA methylases and integron 1. Chemically synthesized PEGylated SNPs showed a bactericidal effect against all tested strains at a concentration between 9.41 and 18.82 mg/L using BMD. The ADM data revealed that SNPs had uniform MICs (18.82 mg/L) for all tested strains. On the other hand, custom-made SNPs failed to impart any antibacterial effect at the equivalent concentrations of chemically synthesized SNPs. The WST-1 assay revealed no significant cytotoxicity of the PEGylated SNPs even at the highest concentration (94.08 mg/L). CONCLUSIONS: To the best of our knowledge, this is the first attempted study to show the effectiveness of nanoparticles against multidrug-resistant GNB harbouring NDM-1.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/farmacologia , Enxofre/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Genes Bacterianos , Bactérias Gram-Negativas/enzimologia , Hepatócitos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Polietilenoglicóis/toxicidade , Enxofre/toxicidade , beta-Lactamases/metabolismo
11.
Curr Microbiol ; 65(1): 91-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22538469

RESUMO

Orthorhombic (spherical; ~10 nm) and monoclinic (cylindrical; ~50 nm) sulfur nanoparticles (SNPs) were synthesized and examined for their effects on the total lipid content and desaturase enzymes of Aspergillus niger. Synthesized SNPs were characterized for size with transmission electron microscopy, elemental composition with energy dispersive X-ray spectroscopy and allotropic nature with X-ray diffraction pattern. Both the SNPs considerably reduced total lipid content of the treated fungal isolates with significant down regulation of the expression of various desaturase enzymes (linoleoyl-CoA desaturase, stearoyl-CoA 9-desaturase and phosphatidylcholine desaturase). Unusual high accumulation of saturated fatty acids with depleted lipid layer can be inferred as one of the major reasons of SNPs mediated fungistasis.


Assuntos
Aspergillus niger/efeitos dos fármacos , Membrana Celular/metabolismo , Fungicidas Industriais/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Nanopartículas/química , Enxofre/farmacologia , Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Membrana Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/química , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Enxofre/química
12.
HSS J ; 18(2): 235-239, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35645639

RESUMO

Background: Orthopedic surgery is one of the least diverse medical specialties. Other medical specialties have employed diversity-related initiatives to increase the number of students underrepresented in medicine (URM). Furthermore, with the suspension of visiting student rotations during the COVID-19 pandemic, medical students used residency program Web sites as a main source of program-specific information. Aims/Purpose: The purpose of this study was to measure the extent to which orthopedic surgery residency program Web sites describe diversity and inclusion initiatives. Methods: The Electronic Residency Application Service (ERAS) was used to identify U.S. orthopedic surgery residency programs. The programs' Web sites were reviewed, and data on commitments to diversity and inclusion were collected. Descriptive statistics of these data were generated. Results: There were 192 residency programs identified and 3 were excluded from the analysis due to lack of Web sites. Of the remaining 189 residency program Web sites, only 55 (29.10%) contained information on diversity and inclusion. Information on a commitment to improving diversity and inclusion was the most prevalent data point found among program Web sites, although it was found on only 15% of program Web sites. Conclusion: Orthopedic surgery residency programs rarely address topics related to diversity and inclusion on their program Web sites. An emphasis on opportunities for URM students and initiatives related to diversity and inclusion on program Web sites may improve URM outreach and serve as one method for increasing URM matriculation into orthopedic surgery.

13.
Appl Microbiol Biotechnol ; 90(2): 733-43, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21350853

RESUMO

Surface-modified sulfur nanoparticles (SNPs) of two different sizes were prepared via a modified liquid-phase precipitation method, using sodium polysulfide and ammonium polysulfide as starting material and polyethylene glycol-400 (PEG-400) as the surface stabilizing agent. Surface topology, size distribution, surface modification of SNPs with PEG-400, quantitative analysis for the presence of sulfur in nanoformulations, and thermal stability of SNPs were determined by atomic force microscopy (AFM), dynamic light scattering (DLS) plus high-resolution transmission electron microscopy (HR-TEM), fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray (EDX) spectroscopy, and thermogravimetric analysis (TGA), respectively. A simultaneous study with micron-sized sulfur (S(0)) and SNPs was carried out to evaluate their fungicidal efficacy against Aspergillus niger and Fusarium oxysporum in terms of radial growth, sporulation, ultrastructural modifications, and phospholipid content of the fungal strains using a modified poisoned food technique, spore-germination slide bioassay, environmental scanning electron microscopy (ESEM), and spectrometry. SNPs expressed promising inhibitory effect on fungal growth and sporulation and also significantly reduced phospholipid content.


Assuntos
Antifúngicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Nanopartículas/química , Enxofre/química , Análise de Variância , Antifúngicos/química , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/isolamento & purificação , Aspergillus niger/ultraestrutura , Fusarium/crescimento & desenvolvimento , Fusarium/isolamento & purificação , Fusarium/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Polietilenoglicóis/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
14.
Curr Microbiol ; 62(3): 715-26, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20936471

RESUMO

Despite discovery of the pathogen more than 100 years ago, tuberculosis (TB) continues to be a major killer disease worldwide. Currently a third of world population is infected and multiple-drug-resistant (mdr) TB registers maximum mortality by a single pathogen. Nanomedicine provides enormous opportunity for developing novel drugs. We have recently demonstrated surface-modified-lipophilic-nanosilica as drug to combat malaria and 100% lethal virus, BmNPV. Nanosilver possesses inherent antibacterial properties, but toxicity is a major concern. We hypothesized that capping with nature-inspired biomolecules, bovine serum albumin (BSA) and Poly-n-vinyl-pyrrolidone (PVP) used as blood volume extender, might insure biosafety. BSA-nano-Ag was found to be more stable than PVP-nano-Ag at physiological pH. In this first ever study on clinical isolates collected from TB endemic areas, we report, BSA-nano-Ag act as potent anti-TB drug. Further study with (human serum albumin)-nano-Ag and core-shell-nano-Ag could increase the biocompatibility of oral TB drug formulations without compromising on the efficacy of the drug.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/microbiologia , Prata/farmacologia , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
15.
Materials (Basel) ; 14(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671661

RESUMO

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B-X and X-X bond, the X-X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B-X-B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.

16.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944968

RESUMO

High-risk Multiple Myeloma (MM) patients were found to maintain telomere length (TL), below the margin of short critical length, consistent with proactive overexpression of telomerase. Previously, DNA methylation has been shown as a determinant of telomere-related gene (TRG) expression and TL to assess risk in different types of cancer. We mapped genome-wide DNA methylation in a cohort of newly diagnosed MM (NDMM; n = 53) patients of major molecular subgroups, compared to age-matched healthy donors (n = 4). Differential methylation and expression at TRG-loci were analyzed in combination with overlapping chromatin marks and underlying DNA-sequences. We observed a strong correlation (R2 ≥ 0.5) between DNA methylation and expression amongst selective TRGs, such that demethylation at the promoters of DDX1 and TERF1 were associated to their oncogenic upregulation, while demethylation at the bodies of two key tumor suppressors ZNF208 and RAP1A led to downregulation of the genes. We demonstrated that TRG expression may be controlled by DNA methylation alone or in cooperation with chromatin modifications or CCCTC-binding factor at the regulatory regions. Additionally, we showed that hypomethylated DMRs of TRGs in NDMM are stabilized with G-quadruplex forming sequences, suggesting a crucial role of these epigenetically vulnerable loci in MM pathogenesis. We have identified a panel of five TRGs, which are epigenetically deregulated in NDMM patients and may serve as early detection biomarkers or therapeutic targets in the disease.

17.
Cells ; 10(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34685612

RESUMO

Conventional wisdom is that Sprouty2 (SPRY2), a suppressor of Receptor Tyrosine Kinase (RTK) signaling, functions as a tumor suppressor and is downregulated in many solid tumors. We reported, for the first time, that increased expression of SPRY2 augments cancer phenotype and Epithelial-Mesenchymal-Transition (EMT) in colorectal cancer (CRC). In this report, we assessed epigenetic DNA modifications that regulate SPRY2 expression in CRC. A total of 4 loci within SPRY2 were evaluated for 5mC using Combined Bisulfite Restriction Analysis (COBRA). Previously sequenced 5hmC nano-hmC seal data within SPRY2 promoter and gene body were evaluated in CRC. Combined bioinformatics analyses of SPRY2 CRC transcripts by RNA-seq/microarray and 450K methyl-array data archived in The Cancer Genome Atlas (TCGA) and GEO database were performed. SPRY2 protein in CRC tumors and cells was measured by Western blotting. Increased SPRY2 mRNA was observed across several CRC datasets and increased protein expression was observed among CRC patient samples. For the first time, SPRY2 hypomethylation was identified in adenocarcinomas in the promoter and gene body. We also revealed, for the first time, increases of 5hmC deposition in the promoter region of SPRY2 in CRC. SPRY2 promoter hypomethylation and increased 5hmC may play an influential role in upregulating SPRY2 in CRC.


Assuntos
Neoplasias Colorretais/genética , Epigênese Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Regulação para Cima/genética , 5-Metilcitosina/metabolismo , Adenoma/genética , Sítios de Ligação/genética , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
18.
J Hematol Oncol ; 13(1): 108, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762714

RESUMO

BACKGROUND: Multiple Myeloma (MM) is a hematological malignancy with genomic heterogeneity and poor survival outcome. Apart from the central role of genetic lesions, epigenetic anomalies have been identified as drivers in the development of the disease. METHODS: Alterations in the DNA methylome were mapped in 52 newly diagnosed MM (NDMM) patients of six molecular subgroups and matched with loci-specific chromatin marks to define their impact on gene expression. Differential DNA methylation analysis was performed using DMAP with a ≥10% increase (hypermethylation) or decrease (hypomethylation) in NDMM subgroups, compared to control samples, considered significant for all the subsequent analyses with p<0.05 after adjusting for a false discovery rate. RESULTS: We identified differentially methylated regions (DMRs) within the etiological cytogenetic subgroups of myeloma, compared to control plasma cells. Using gene expression data we identified genes that are dysregulated and correlate with DNA methylation levels, indicating a role for DNA methylation in their transcriptional control. We demonstrated that 70% of DMRs in the MM epigenome were hypomethylated and overlapped with repressive H3K27me3. In contrast, differentially expressed genes containing hypermethylated DMRs within the gene body or hypomethylated DMRs at the promoters overlapped with H3K4me1, H3K4me3, or H3K36me3 marks. Additionally, enrichment of BRD4 or MED1 at the H3K27ac enriched DMRs functioned as super-enhancers (SE), controlling the overexpression of genes or gene-cassettes. CONCLUSIONS: Therefore, this study presents the underlying epigenetic regulatory networks of gene expression dysregulation in NDMM patients and identifies potential targets for future therapies.


Assuntos
Epigênese Genética , Epigenoma , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Mieloma Múltiplo/genética , Aneuploidia , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 11/ultraestrutura , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 14/ultraestrutura , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Par 4/ultraestrutura , Ciclina D1/biossíntese , Ciclina D1/genética , Ciclina D2/biossíntese , Ciclina D2/genética , Metilação de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Código das Histonas , Histonas/metabolismo , Humanos , Mieloma Múltiplo/classificação , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Plasmócitos/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-maf/genética , Translocação Genética
19.
Cancer Res ; 80(21): 4707-4719, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004350

RESUMO

T-cell exhaustion in cancer is linked to poor clinical outcomes, where evidence suggests T-cell metabolic changes precede functional exhaustion. Direct competition between tumor-infiltrating lymphocytes (TIL) and cancer cells for metabolic resources often renders T cells dysfunctional. Environmental stress produces epigenome remodeling events within TIL resulting from loss of the histone methyltransferase EZH2. Here, we report an epigenetic mechanism contributing to the development of metabolic exhaustion in TIL. A multiomics approach revealed a Cdkn2a.Arf-mediated, p53-independent mechanism by which EZH2 inhibition leads to mitochondrial dysfunction and the resultant exhaustion. Reprogramming T cells to express a gain-of-function EZH2 mutant resulted in an enhanced ability of T cells to inhibit tumor growth in vitro and in vivo. Our data suggest that manipulation of T-cell EZH2 within the context of cellular therapies may yield lymphocytes that are able to withstand harsh tumor metabolic environments and collateral pharmacologic insults. SIGNIFICANCE: These findings demonstrate that manipulation of T-cell EZH2 in cellular therapies may yield cellular products able to withstand solid tumor metabolic-deficient environments. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4707/F1.large.jpg.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular Tumoral , Epigênese Genética/fisiologia , Camundongos , Microambiente Tumoral/imunologia
20.
Blood Cancer J ; 10(6): 70, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32555163

RESUMO

Primary plasma cell leukemia (pPCL) is a rare and aggressive form of multiple myeloma (MM) that is characterized by the presence of ≥20% circulating plasma cells. Overall survival remains poor despite advances of anti-MM therapy. The disease biology as well as molecular mechanisms that distinguish pPCL from non-pPCL MM remain poorly understood and, given the rarity of the disease, are challenging to study. In an attempt to identify key biological mechanisms that result in the aggressive pPCL phenotype, we performed whole-exome sequencing and gene expression analysis in 23 and 41 patients with newly diagnosed pPCL, respectively. The results reveal an enrichment of complex structural changes and high-risk mutational patterns in pPCL that explain, at least in part, the aggressive nature of the disease. In particular, pPCL patients with traditional low-risk features such as translocation t(11;14) or hyperdiploidy accumulated adverse risk genetic events that could account for the poor outcome in this group. Furthermore, gene expression profiling showed upregulation of adverse risk modifiers in pPCL compared to non-pPCL MM, while adhesion molecules and extracellular matrix proteins became increasingly downregulated. In conclusion, this is one of the largest studies to dissect pPCL on a genomic and molecular level.


Assuntos
Leucemia Plasmocitária/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Genômica , Humanos , Leucemia Plasmocitária/patologia , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Transcriptoma , Translocação Genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA