Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 297(2): 100965, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270956

RESUMO

Signaling of semaphorin ligands via their plexin-neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein-protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer-dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.


Assuntos
Moléculas de Adesão Celular , Proteínas do Tecido Nervoso , Semaforinas , Membrana Celular/metabolismo , Movimento Celular , Humanos , Transdução de Sinais
2.
Acc Chem Res ; 53(4): 792-799, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32227891

RESUMO

The cell plasma membrane (PM) contains thousands of proteins that sense and respond to the outside environment. These proteins have evolved sensitivity to a wide variety of physical and chemical signals and act as a delivery system across the PM. Membrane proteins are critical for information flow and decision making in the cell and thus are important targets in drug development. A critical aspect of membrane protein function is the way they interact with other proteins, often through the formation of dimers or small oligomers that regulate function at the protein, cell, and organism levels. Resolving membrane protein interactions in a live cell environment is challenging because of the chemical diversity and spatial heterogeneity of the PM. In this Account, we describe a fluorescence technique called pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) that is ideally suited to quantify membrane associations in live cells. PIE-FCCS is a two-color fluorescence fluctuation method that can simultaneously measure the concentration, mobility, proximity, and oligomerization state of membrane proteins in situ. It has several advantages over two related approaches, single-molecule tracking (SMT) and Förster resonance energy transfer (FRET), including that it measures all of the properties listed above in a single measurement. Another advantage is that PIE-FCCS is most sensitive at the physiological expression levels for many membrane proteins rather than the very low or high levels typical in other techniques. Here, we review the history of FCCS as it has been applied to study membrane protein interactions in cells. We also describe PIE-FCCS and the advantages it has over biochemical approaches like coimmunoprecipitation (co-IP) and proximity ligation assays (PLA). Finally, we review two classes of membrane proteins that have been studied with FCCS and PIE-FCCS: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). For RTKs, ligand induced dimerization directly regulates the catalytic activity of the kinase, but higher order oligomerization and ligand-independent dimerization can complicate this historically simple paradigm. PIE-FCCS data have resolved a low population of EGFR dimers under basal conditions and assembly into multimers when stimulated with ligand. While GPCRs function primarily as monomers, dimerization has been hypothesized to regulate function for some receptors. PIE-FCCS data have established the dimerization potential of rhodopsin at low densities and were critical for the discovery of a novel dimerization interface in human cone opsins. This Account describes the how FCCS and PIE-FCCS can reveal the details of quaternary interactions in each of these receptor systems.


Assuntos
Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência , Animais , Sobrevivência Celular , Humanos , Ligação Proteica
3.
Bioconjug Chem ; 31(5): 1362-1369, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32329609

RESUMO

Immobilizing a signaling protein to guide cell behavior has been employed in a wide variety of studies. This approach draws inspiration from biology, where specific, affinity-based interactions between membrane receptors and immobilized proteins in the extracellular matrix guide many developmental and homeostatic processes. Synthetic immobilization approaches, however, do not necessarily recapitulate the in vivo signaling system and potentially lead to artificial receptor-ligand interactions. To investigate the effects of one example of engineered receptor-ligand interactions, we focus on the immobilization of interferon-γ (IFN-γ), which has been used to drive differentiation of neural stem cells (NSCs). To isolate the effect of ligand immobilization, we transfected Cos-7 cells with only interferon-γ receptor 1 (IFNγR1), not IFNγR2, so that the cells could bind IFN-γ but were incapable of canonical signal transduction. We then exposed the cells to surfaces containing covalently immobilized IFN-γ and studied membrane morphology, receptor-ligand dynamics, and receptor activation. We found that exposing cells to immobilized but not soluble IFN-γ drove the formation of filopodia in both NSCs and Cos-7, showing that covalently immobilizing IFN-γ is enough to affect cell behavior, independently of canonical downstream signaling. Overall, this work suggests that synthetic growth factor immobilization can influence cell morphology beyond enhancing canonical cell responses through the prolonged signaling duration or spatial patterning enabled by protein immobilization. This suggests that differentiation of NSCs could be driven by canonical and non-canonical pathways when IFN-γ is covalently immobilized. This finding has broad implications for bioengineering approaches to guide cell behavior, as one ligand has the potential to impact multiple pathways even when cells lack the canonical signal transduction machinery.


Assuntos
Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Interferon gama/química , Interferon gama/metabolismo , Pseudópodes/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Ligantes , Receptores de Interferon/genética , Transfecção , Receptor de Interferon gama
4.
Anal Chem ; 89(10): 5221-5229, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28418634

RESUMO

A novel plasmonic nanoledge device was presented to explore the geometry-induced trapping of nanoscale biomolecules and examine a generation of surface plasmon resonance (SPR) for plasmonic sensing. To design an optimal plasmonic device, a semianalytical model was implemented for a quantitative analysis of SPR under plane-wave illumination and a finite-difference time-domain (FDTD) simulation was used to study the optical transmission and refractive index (RI) sensitivity. In addition, total internal reflection fluorescence (TIRF) imaging was used to visualize the migration of fluorescently labeled bovine serum albumin (BSA) into the nanoslits; and fluorescence correlation spectroscopy (FCS) was further used to investigate the diffusion of BSA in the nanoslits. Transmission SPR measurements of free prostate specific antigen (f-PSA), which is similar in size to BSA, were performed to validate the trapping of the molecules via specific binding reactions in the nanoledge cavities. The present study may facilitate further development of single nanomolecule detection and new nanomicrofluidic arrays for effective detection of multiple biomarkers in clinical biofluids.


Assuntos
Nanoestruturas/química , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície/métodos , Animais , Anticorpos Imobilizados/imunologia , Biomarcadores/análise , Bovinos , Corantes Fluorescentes/química , Ouro/química , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/imunologia
5.
Front Cell Dev Biol ; 10: 886718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573672

RESUMO

V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.

6.
Sci Adv ; 8(49): eabo3977, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490345

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a global health crisis after its emergence in 2019. Replication of the virus is initiated by binding of the viral spike (S) protein to human angiotensin-converting enzyme 2 (ACE2) on the target cell surface. Mutations acquired by SARS-CoV-2 S variants likely influence virus-target cell interaction. Here, using single-virus tracking to capture these initial steps, we observe how viruses carrying variant S interact with target cells. Specificity for ACE2 occurs for viruses with the reference sequence or D614G mutation. Analysis of the Alpha, Beta, and Delta SARS-CoV-2 variant S proteins revealed a progressive altered cell interaction with a reduced dependence on ACE2. Notably, the Delta variant S affinity was independent of ACE2. These enhanced interactions may account for the increased transmissibility of variants. Knowledge of how mutations influence cell interaction is essential for vaccine development against emerging variants of SARS-CoV-2.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA