Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 629(8014): 1126-1132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750356

RESUMO

Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrinsicamente Desordenadas , Temperatura , Sensação Térmica , Termotolerância , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sensação Térmica/genética , Sensação Térmica/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Fatores de Transcrição/metabolismo , Transdução de Sinais
2.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36018271

RESUMO

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Assuntos
Dióxido de Carbono , Mudança Climática , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Água/metabolismo
3.
Cell ; 136(1): 21-3, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19135884

RESUMO

The search for receptors for abscisic acid (ABA), a phytohormone central to the response of plants to biotic and abiotic stress, has been controversial. In this issue, Pandey et al. (2009) report the identification of two membrane proteins from Arabidopsis, GTG1 and GTG2, that bind ABA in vitro and mediate ABA responses in vivo.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 180(2): 1066-1080, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886115

RESUMO

Improving the water use efficiency (WUE) of crop plants without trade-offs in growth and yield is considered a utopic goal. However, recent studies on model plants show that partial restriction of transpiration can occur without a reduction in CO2 uptake and photosynthesis. In this study, we analyzed the potentials and constraints of improving WUE in Arabidopsis (Arabidopsis thaliana) and in wheat (Triticum aestivum). We show that the analyzed Arabidopsis wild-type plants consume more water than is required for unrestricted growth. WUE was enhanced without a growth penalty by modulating abscisic acid (ABA) responses either by using overexpression of specific ABA receptors or deficiency of ABA coreceptors. Hence, the plants showed higher water productivity compared with the wild-type plants; that is, equal growth with less water. The high WUE trait was resilient to changes in light intensity and water availability, but it was sensitive to the ambient temperature. ABA application to plants generated a partial phenocopy of the water-productivity trait. ABA application, however, was never as effective as genetic modification in enhancing water productivity, probably because ABA indiscriminately targets all ABA receptors. ABA agonists selective for individual ABA receptors might offer an approach to phenocopy the water-productivity trait of the high WUE lines. ABA application to wheat grown under near-field conditions improved WUE without detectable growth trade-offs. Wheat yields are heavily impacted by water deficit, and our identification of this crop as a promising target for WUE improvement may help contribute to greater food security.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Triticum/fisiologia , Água/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ecótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Temperatura , Triticum/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 114(38): 10280-10285, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874521

RESUMO

The phytohormone abscisic acid (ABA) is induced in response to abiotic stress to mediate plant acclimation to environmental challenge. Key players of the ABA-signaling pathway are the ABA-binding receptors (RCAR/PYR1/PYL), which, together with a plant-specific subclade of protein phosphatase 2C (PP2C), form functional holoreceptors. The Arabidopsis genome encodes nine PP2C coreceptors and 14 different RCARs, which can be divided into three subfamilies. The presence of these gene families in higher plants points to the existence of an intriguing regulatory network and poses questions as to the functional compatibility and specificity of receptor-coreceptor interactions. Here, we analyzed all RCAR-PP2C combinations for their capacity to regulate ABA signaling by transient expression in Arabidopsis protoplasts. Of 126 possible RCAR-PP2C pairings, 113 were found to be functional. The three subfamilies within the RCAR family showed different sensitivities to regulating the ABA response at basal ABA levels when efficiently expressed. At exogenous high ABA levels, the RCARs regulated most PP2Cs and activated the ABA response to a similar extent. The PP2C AHG1 was regulated only by RCAR1/PYL9, RCAR2/PYL7, and RCAR3/PYL8, which are characterized by a unique tyrosine residue. Site-directed mutagenesis of RCAR1 showed that its tyrosine residue is critical for AHG1 interaction and regulation. Furthermore, the PP2Cs HAI1 to HAI3 were regulated by all RCARs, and the ABA receptor RCAR4/PYL10 showed ABA-dependent PP2C regulation. The findings unravel the interaction network of possible RCAR-PP2C pairings and their different potentials to serve a rheostat function for integrating fluctuating hormone levels into the ABA-response pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Redes Reguladoras de Genes , Genoma de Planta , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C/metabolismo
6.
Ann Bot ; 124(4): 581-590, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30629104

RESUMO

BACKGROUND AND AIMS: Water deficit is the single most important factor limiting plant productivity in the field. Poplar is a crop used for second-generation bioenergy production that can be cultivated on marginal land without competing for land use in food production. Poplar has a high demand for water, which makes improving its water use efficiency (WUE) an attractive goal. Recently, we showed that enhanced expression of specific receptors of arabidopsis for the phytohormone abscisic acid (ABA) can improve WUE in arabidopsis and water productivity, i.e. more biomass is formed per unit of water over time. In this study, we examined whether ABA receptors from poplar can enhance WUE and water productivity in arabidopsis. METHODS: ABA receptors from poplar were stably introduced into arabidopsis for analysis of their effect on water use efficiency. Physiological analysis included growth assessment and gas exchange measurements. KEY RESULTS: The data presented here are in agreement with the functionality of poplar ABA receptors in arabidopsis, which led to ABA-hypersensitive seed germination and root growth. In addition, arabidopsis lines expressing poplar RCAR10, but not RCAR9, showed increased WUE by up to 26 % compared with the wild type with few trade-offs in growth that also resulted in higher water productivity during drought. The improved WUE was mediated by reduced stomatal conductance, a steeper CO2 gradient at the leaf boundary and sustained photosynthesis resulting in an increased intrinsic WUE (iWUE). CONCLUSIONS: The analysis is a case study supporting the use of poplar ABA receptors for improving WUE and showing the feasibility of using a heterologous expression strategy for generating plants with improved water productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Populus , Ácido Abscísico , Secas , Água
8.
Proc Natl Acad Sci U S A ; 113(24): 6791-6, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247417

RESUMO

Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis WUE was assessed by three independent approaches involving gravimetric analyses, (13)C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transdução de Sinais/fisiologia , Água/metabolismo , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Folhas de Planta/genética
9.
Plant J ; 92(2): 199-210, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28746755

RESUMO

The plant hormone abscisic acid (ABA) is a key player in responses to abiotic stress. ABA regulates a plant's water status and mediates drought tolerance by controlling stomatal gas exchange, water conductance and differential gene expression. ABA is recognized and bound by the Regulatory Component of ABA Receptors (RCARs)/PYR1/PYL (Pyrabactin Resistance 1/PYR1-like). Ligand binding stabilizes the interaction of RCARs with type 2C protein phosphatases (PP2C), which are ABA co-receptors. While the core pathway of ABA signalling has been elucidated, the large number of different ABA receptors and co-receptors within a plant species generates a complexity of heteromeric receptor complexes that has not functionally been resolved in any plant species to date. In this study, we characterized ABA receptors and co-receptors of grey poplar (Populus x canescens [Ait.] Sm.) and their capacity to regulate ABA responses. We observed a high number of regulatory combinations of holo-receptor complexes, but also some preferential and selective RCAR-PP2C interactions. Poplar and Arabidopsis ABA receptor components revealed a strong structural and functional conservation. Heterologous receptor complexes of poplar and Arabidopsis components showed functionality in vitro and regulated ABA-responsive gene expression in cells of both species. ABA-responsive promoters of Arabidopsis were also active in poplar, which was explored to generate poplar reporter lines expressing green fluorescent protein in response to ABA. The study presents a detailed analysis of receptor complexes of a tree species and shows high conservation of ABA receptor components between an annual and a perennial plant.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Populus/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Genes de Plantas/genética , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Populus/fisiologia , Receptores de Superfície Celular/genética
10.
Proc Natl Acad Sci U S A ; 111(15): 5741-6, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706923

RESUMO

The plant hormone abscisic acid (ABA) acts both as a developmental signal and as an integrator of environmental cues such as drought and cold. ABA perception recruits an ABA-binding regulatory component [regulatory component of ABA receptor (RCAR)/PYR1/PYL] and an associated protein phosphatase 2C (PP2C). Phytohormone binding inactivates the phosphatase activity of the coreceptor, permitting phosphorelay of the ABA signal via downstream protein kinases. RCARs and PP2C coreceptors are represented by small protein families comprising 14 and 9 members in Arabidopsis, respectively. The specificity of the RCAR-PP2C interaction and the constraints contributing to specific combinations are poorly understood. In this contribution, we analyzed RCAR7/PYL13, which is characterized by three variant amino acid residues in the conserved ABA-binding pocket. RCAR7 regulated the phosphatase activity of the PP2Cs ABI1, ABI2, and PP2CA in vitro at nanomolar ABA levels; however, it was unable to regulate the structurally related hypersensitive to ABA 1 (HAB1). Site-directed mutagenesis of HAB1 established ABA-dependent regulation by RCAR7. Conversion of the noncanonical amino acid residues of RCAR7 into the consensus ABA-binding pocket did not perceptibly change receptor function. Ectopic expression of RCAR7 in Arabidopsis resulted in ABA hypersensitivity affecting gene regulation, seed germination, and stomatal closure. The RCAR7 loss-of-function mutant revealed no changes in ABA responses, similar to the RCAR9 knockout line, whereas the combined deficiency of RCAR7 and RCAR9 resulted in ABA-insensitive seed germination. The study shows a role of RCAR7 in early plant development, proves its ABA receptor function, and identifies structural constraints of RCAR7-PP2C interaction.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Primers do DNA/genética , Escherichia coli , Mutagênese Sítio-Dirigida , Fosfoproteínas Fosfatases/genética , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Am J Med Genet A ; 164A(3): 620-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357125

RESUMO

Interstitial deletions of chromosome band 14q24.1q24.3 are apparently very rare. We report on three unrelated patients with overlapping de novo deletions of sizes 5.4, 2.8, and 2.3 Mb in this region. While some clinical problems such as intestinal malrotation, cryptorchidism, and ectopic kidney were only observed in single patients, all three patients had mild intellectual disability, congenital heart defects (truncus arteriosus, pulmonary atresia, atrial septal defect, and/or ventricular septal defect), brachydactyly, hypertelorism, broad nasal bridge, and thin upper lips. Likely haploinsufficiency of one or several of the 19 genes in the common deleted interval (ACTN1, DCAF5, EXD2, GALNTL1, ERH, SLC39A9, PLEKHD1, CCDC177, KIAA0247, LOC100289511, SRSF5, SLC10A1, SMOC1, SLC8A3, ADAM21P1, COX16, SYNJ2BP, SYNJ2BP-COX16, ADAM21) was responsible for these manifestations, but apart from SMOC1, mutations in which cause autosomal recessive Waardenburg anophthalmia syndrome, and ACTN1, mutations in which are associated with congenital macrothrombocytopenia, no disease associations have so far been reported for the other genes. Functional studies and a systematic search for mutations or chromosome aberrations in this region will elucidate the role of individual genes in the clinical manifestations and will provide insight into the underlying biological mechanisms.


Assuntos
Braquidactilia/genética , Deleção Cromossômica , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 1 , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Braquidactilia/diagnóstico , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Feminino , Cardiopatias Congênitas/diagnóstico , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Fenótipo
13.
Plant Physiol ; 157(4): 2108-19, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21976481

RESUMO

The phytohormone abscisic acid (ABA) regulates stress responses and controls numerous aspects of plant growth and development. Biosynthetic precursors and catabolites of ABA have been shown to trigger ABA responses in physiological assays, but it is not clear whether these are intrinsically active or whether they are converted into ABA in planta. In this study, we analyzed the effect of ABA precursors, conjugates, and catabolites on hormone signaling in Arabidopsis (Arabidopsis thaliana). The compounds were also tested in vitro for their ability to regulate the phosphatase moiety of ABA receptor complexes consisting of the protein phosphatase 2C ABI2 and the coreceptors RCAR1/PYL9, RCAR3/PYL8, and RCAR11/PYR1. Using mutants defective in ABA biosynthesis, we show that the physiological activity associated with ABA precursors derives predominantly from their bioconversion to ABA. The ABA glucose ester conjugate, which is the most widespread storage form of ABA, showed weak ABA-like activity in germination assays and in triggering ABA signaling in protoplasts. The ABA conjugate and precursors showed negligible activity as a regulatory ligand of the ABI2/RCAR receptor complexes. The majority of ABA catabolites were inactive in our assays. To analyze the chemically unstable 8'- and 9'-hydroxylated ABA catabolites, we used stable tetralone derivatives of these compounds, which did trigger selective ABA responses. ABA synthetic analogs exhibited differential activity as regulatory ligands of different ABA receptor complexes in vitro. The data show that ABA precursors, catabolites, and conjugates have limited intrinsic bioactivity and that both natural and synthetic ABA-related compounds can be used to probe the structural requirements of ABA ligand-receptor interactions.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reporter , Germinação/efeitos dos fármacos , Germinação/genética , Germinação/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Protoplastos , Proteínas Recombinantes de Fusão , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tetralonas/química , Tetralonas/metabolismo , Tetralonas/farmacologia
14.
Front Plant Sci ; 13: 1071710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743550

RESUMO

Climate change and overexploitation of groundwater resources cause constraints on water demand for agriculture, thus threatening crop productivity. For future food security, there is an urgent need for crops of high water use efficiency combined with high crop productivity, i.e. having high water productivity. High water productivity means efficient biomass accumulation at reduced transpiration. Recent studies show that plants are able to optimize carbon uptake per water transpired with little or no trade-off in yield. The phytohormone abscisic acid (ABA) plays a pivotal role in minimizing leaf transpiration and mediating enhanced water productivity. Hence, ABA and more chemically stable ABA agonists have the potential to improve crop water productivity. Synthesis, screening, and identification of suitable ABA agonists are major efforts currently undertaken. In this study, we used yeast expressing the plant ABA signal pathway to prescreen ABA-related cyano cyclopropyl compounds (CCPs). The yeast analysis allowed testing the ABA agonists for general toxicity, efficient uptake, and specificity in regulating different ABA receptor complexes. Subsequently, promising ABA-mimics were analyzed in vitro for ligand-receptor interaction complemented by physiological analyses. Several CCPs activated ABA signaling in yeast and plant cells. CCP1, CCP2, and CCP5 were by an order of magnitude more efficient than ABA in minimizing transpiration of Arabidopsis plants. In a progressive drought experiment, CCP2 mediated an increase in water use efficiency superior to ABA without trade-offs in biomass accumulation.

15.
Plant J ; 61(1): 25-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19769575

RESUMO

The recent discovery of a variety of receptors has led to new models for hormone perception in plants. In the case of the hormone abscisic acid (ABA), which regulates plant responses to abiotic stress, perception seems to occur both at the plasma membrane and in the cytosol. The cytosolic receptors for ABA have recently been identified as complexes between protein phosphatases 2C (PP2C) and regulatory components (RCAR/PYR/PYL) that bind ABA. Binding of ABA to the receptor complexes inactivates the PP2Cs, thereby activating the large variety of physiological processes regulated by ABA. The Arabidopsis genome encodes 13 homologues of RCAR1 and approximately 80 PP2Cs, of which six in clade A have been identified as negative regulators of ABA responses. In this study we characterize a novel member of the RCAR family, RCAR3. RCAR3 was identified in a screen for interactors of the PP2Cs ABI1 and ABI2, which are key regulators of ABA responses. RCAR3 was shown to repress ABI1 and ABI2 in vitro, and to stimulate ABA signalling in protoplast cells. RCAR3 conferred greater ABA sensitivity to the PP2C regulation than RCAR1, whereas stereo-selectivity for (S)-ABA was less stringent with RCAR3 as compared with RCAR1. In addition, regulation of the protein phosphatase activity by RCAR1 and RCAR3 was more sensitive to ABA for ABI1 than for ABI2. Based on the differences we have observed in transcriptional regulation and biochemical properties, we propose a model whereby differential expression of the co-receptors and combinatorial assembly of the receptor complexes act in concert to modulate and fine-tune ABA responses.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calorimetria , Proteínas de Transporte , Dicroísmo Circular , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Fosfoproteínas Fosfatases/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteína Fosfatase 2C , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
16.
Biomed Microdevices ; 13(3): 533-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21374067

RESUMO

During the last decade microarrays have become a powerful analytical tool. Commonly microarrays are produced in a non-contact manner using silicone printheads. However, silicone printheads are expensive and not able to be used as a disposable. Here, we show the development and functional characterization of 8-channel plastic microarray printheads that overcome both disadvantages of their conventional silicone counterparts. A combination of injection-molding and laser processing allows us to produce a high quantity of cheap, customizable and disposable microarray printheads. The use of plastics (e.g., polystyrene) minimizes the need for surface modifications required previously for proper printing results. Time-consuming regeneration processes, cleaning procedures and contaminations caused by residual samples are avoided. The utilization of plastic printheads for viscous liquids, such as cell suspensions or whole blood, is possible. Furthermore, functional parts within the plastic printhead (e.g., particle filters) can be included. Our printhead is compatible with commercially available TopSpot devices but provides additional economic and technical benefits as compared to conventional TopSpot printheads, while fulfilling all requirements demanded on the latter. All in all, this work describes how the field of traditional microarray spotting can be extended significantly by low cost plastic printheads.


Assuntos
Equipamentos Descartáveis , Análise em Microsséries/instrumentação , Plásticos , Impressão/instrumentação , Sobrevivência Celular , Desenho de Equipamento , Filtração , Células HeLa , Humanos , Injeções , Lasers , Análise Serial de Tecidos , Viscosidade
17.
Metabolites ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35050133

RESUMO

Small or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why-or why not-certain SNAPs are produced in plants. Here, we used the wound-induced, vein patterning regulating VEP1 (AtStR1, At4g24220) and its paralogue gene on locus At5g58750 (AtStR2) from Arabidopsis to study this issue. The enzymes encoded by VEP1-like genes were clustered under the term PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes) as it was previously demonstrated that they are involved in cardenolide and/or iridoid biosynthesis in other plants. In order to further understand the general role of PRISEs and to detect additional more "accidental" roles we herein characterized A. thaliana steroid reductase 1 (AtStR1) and compared it to A. thaliana steroid reductase 2 (AtStR2). We used A. thaliana Col-0 wildtype plants as well as VEP1 knockout mutants and VEP1 knockout mutants overexpressing either AtStR1 or AtStR2 to investigate the effects on vein patterning and on the stress response after treatment with methyl vinyl ketone (MVK). Our results added evidence to the assumption that AtStR1 and AtStR2, as well as PRISEs in general, play specific roles in stress and defense situations and may be responsible for sudden metabolic shifts.

18.
Trends Plant Sci ; 24(7): 625-635, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31153771

RESUMO

The physiological roles of abscisic acid (ABA) as a stress hormone in plant responses to water shortage, including stomatal regulation and gene expression, have been well documented. However, less attention has been paid to the function of basal ABA synthesized under well-watered conditions in recent studies. In this review, we summarize progress in the understanding of how low concentrations of ABA are perceived at the molecular level and how its signaling affects plant metabolism and growth under nonstressed conditions. We also discuss the dual nature of ABA in acting as an inhibitor and activator of plant growth and development.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas , Plantas , Estresse Fisiológico , Água
19.
Clin Case Rep ; 5(5): 613-615, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28469861

RESUMO

Dravet syndrome is often caused by SCN1A mutations and has a wide variation in clinical appearance. Indication for genetic analysis should be an epileptic encephalopathy or severe clinical course of seizures in infants with episodes of fever before the first year of life.

20.
J Nanobiotechnology ; 3: 5, 2005 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15985184

RESUMO

Our experiments describe an alternative method of dsDNA recognition using zinc finger (ZF) molecules which bind DNA specifically and with high affinity. Our aim was to develop zinc finger probes which are able to bind to dsDNA molecules at predetermined sites. In our basic approach we used pairs of complementary oligonucleotides to form dsDNAs, containing one of the three SP1-transcription factor motifs as a zinc finger recognition site. Two zinc finger probes of the SP1 motif were chemically synthesized and modified with a Dy-633 fluorophore. The SP1 peptides were folded into functional zinc fingers using zinc chloride. The addressable dsDNAs were immobilized on optical fibres, and the kinetics and binding rates of the artificial zinc finger probes were measured by a fluorescence detecting device (photomultiplying tube). The two zinc fingers and their corresponding DNA recognition sites served as specific probes and controls for the matching site and vice versa. Our experiments showed that a variety of dsDNA-binding probes may be created by modification of the amino acid sequence of natural zinc finger proteins. Our findings offer an alternative approach of addressing dsDNA molecules, for example for use in a nanoarray device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA