Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Br J Dermatol ; 188(3): 396-406, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36637891

RESUMO

BACKGROUND: Acute cutaneous inflammation causes microbiome alterations as well as ultrastructural changes in epidermis stratification. However, the interactions between keratinocyte proliferation and differentiation status and the skin microbiome have not been fully explored. OBJECTIVES: Hypothesizing that the skin microbiome contributes to regulation of keratinocyte differentiation and can modify antimicrobial responses, we examined the effect of exposure to commensal (Staphylococcus epidermidis, SE) or pathogenic (Staphylococcus aureus, SA) challenge on epidermal models. METHODS: Explant biopsies were taken to investigate species-specific antimicrobial effects of host factors. Further investigations were performed in reconstituted epidermal models by bulk transcriptomic analysis alongside secreted protein profiling. Single-cell RNA sequencing analysis was performed to explore the keratinocyte populations responsible for SA inflammation. A dataset of 6391 keratinocytes from control (2044 cells), SE challenge (2028 cells) and SA challenge (2319 cells) was generated from reconstituted epidermal models. RESULTS: Bacterial lawns of SA, not SE, were inhibited by human skin explant samples, and microarray analysis of three-dimensional epidermis models showed that host antimicrobial peptide expression was induced by SE but not SA. Protein analysis of bacterial cocultured models showed that SA exposure induced inflammatory mediator expression, indicating keratinocyte activation of other epidermal immune populations. Single-cell DropSeq analysis of unchallenged naive, SE-challenged and SA-challenged epidermis models was undertaken to distinguish cells from basal, spinous and granular layers, and to interrogate them in relation to model exposure. In contrast to SE, SA specifically induced a subpopulation of spinous cells that highly expressed transcripts related to epidermal inflammation and antimicrobial response. Furthermore, SA, but not SE, specifically induced a basal population that highly expressed interleukin-1 alarmins. CONCLUSIONS: These findings suggest that SA-associated remodelling of the epidermis is compartmentalized to different keratinocyte populations. Elucidating the mechanisms regulating bacterial sensing-triggered inflammatory responses within tissues will enable further understanding of microbiome dysbiosis and inflammatory skin diseases, such as atopic eczema.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Queratinócitos/metabolismo , Epiderme/metabolismo , Inflamação , Diferenciação Celular , Infecções Estafilocócicas/patologia
2.
Parasitol Res ; 122(12): 2917-2931, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768367

RESUMO

Tegumentary leishmaniasis (TL) is the main clinical manifestation of leishmaniasis, and it can cause the infected hosts to self-healing cutaneous lesions until mutilating scars in mucosal membranes, particularly in the nose and throat. The treatment against disease presents problems, and the diagnosis is hampered by variable sensitivity and/or specificity of the tests. In this context, the development of prophylactic vaccines could be considered as a strategy to control the disease. Previously, we showed that the recombinant LiHyp1 protein plus adjuvant protected mice from infection with Leishmania infantum, which causes visceral leishmaniasis. In the present study, we tested whether rLiHyp1 could induce protection against infection with L. amazonensis, a parasite species able to cause TL. We immunized BALB/c mice with rLiHyp1 plus saponin (rLiHyp1/S) or incorporated in micelles (rLiHyp1/M) as adjuvants and performed parasitological and immunological evaluations before and after infection. Results showed that after in vitro stimulation from spleen cell cultures using rLiHyp1 or a Leishmania antigenic extract (SLA), rLiHyp1/S and rLiHyp1/M groups developed a Th1-type immune response, which was characterized by high levels of IFN-γ, IL-2, TNF-α and IL-12 cytokines, nitrite, and IgG2a isotype antibodies when compared to values found in the control (saline, saponin, micelles alone) groups, which showed higher levels of anti-SLA IL-4, IL-10, and IgG1 antibodies before and after challenge. In addition, mice receiving rLiHyp1/S or rLiHyp1/M presented significant reductions in the lesion average diameter and parasite load in the infected tissue and internal organs. Blood samples were collected from healthy subjects and TL patients to obtain PBMC cultures, which were in vitro stimulated with rLiHyp1 or SLA, and results showed higher lymphoproliferation and IFN-γ production after stimulus using rLiHyp1, as compared to values found using SLA. These results suggest that rLiHyp1 plus adjuvant was protective against experimental TL and could also be considered for future studies as a vaccine candidate against human disease.


Assuntos
Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Saponinas , Humanos , Animais , Camundongos , Micelas , Leucócitos Mononucleares/metabolismo , Proteínas Recombinantes , Leishmaniose Visceral/parasitologia , Adjuvantes Imunológicos , Citocinas/metabolismo , Vacinação , Camundongos Endogâmicos BALB C , Antígenos de Protozoários/genética
3.
Cytokine ; 153: 155865, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339043

RESUMO

Leishmania virulence proteins should be considered as vaccine candidates against disease, since they are involved in developing infection in mammalian hosts. In a previous study, a Leishmania guanosine-5'-triphosphate (GTP)-binding protein was identified as a potential parasite virulence factor. In the present work, the gene encoding GTP was cloned and the recombinant protein (rGTP) was evaluated as a vaccine candidate against Leishmania infantum infection. The protein was associated with saponin (rGTP/Sap) or Poloxamer 407-based micelles (rGTP/Mic) as adjuvants, and protective efficacy was investigated in BALB/c mice after parasite challenge. Both rGTP/Sap and rGTP/Mic compositions induced a Th1-type immune response in vaccinated animals, with significantly higher levels of IFN-γ, IL-12, IL-2, TNF-α, GM-CSF, nitrite, specific IgG2a isotype antibody and positive lymphoproliferation, when compared to the control groups. This response was accompanied by significantly lower parasite load in the spleens, livers, bone marrows and draining lymph nodes of the animals. Immunological and parasitological evaluations indicated that rGTP/Mic induced a more polarized Th1-type response and higher reduction in the organ parasitism, and with lower hepatotoxicity, when compared to the use of rGTP/Sap. In conclusion, our preliminary data suggest that rGTP could be considered for further development as a vaccine candidate to protect against VL.


Assuntos
Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Animais , Antígenos de Protozoários , Proteínas de Transporte , Guanosina , Guanosina Trifosfato , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Poloxâmero , Polifosfatos , Proteínas Recombinantes
4.
Microb Pathog ; 162: 105341, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34883228

RESUMO

Serological tests used for the diagnosis of tegumentary leishmaniasis (TL) presents problems, mainly related to their variable sensitivity and/or specificity, which can be caused by low levels of antileishmanial antibodies or by presence of cross-reactive diseases, respectively. In this context, the search for new antigenic candidates presenting higher sensitivity and specificity is urgently required. In the present study, the amino acid sequences of the LiHyT, LiHyD, LiHyV, and LiHyP proteins, which were previously showed to be antigenic in the visceral leishmaniasis (VL), were evaluated and eight B-cell epitopes were predicted and used for construction of gene codifying a chimeric protein called ChimLeish. The protein was expressed, purified and evaluated as a recombinant antigen in ELISA (Enzyme-Linked Immunosorbent Assay) for the diagnosis of TL. The own B cell epitopes used to construct the chimera were synthetized and also evaluated as antigens, as well as a soluble Leishmania braziliensis antigenic extract (SLA). Results showed that ChimLeish presented 100% sensitivity and specificity to diagnose TL, while synthetic peptides showed sensitivity varying from 9.1% to 90.9%, while specificity reached from 98.3% to 99.1%. SLA showed sensitivity and specificity of 18.2% and 98.3%, respectively. A preliminary prognostic evaluation showed that anti-ChimLeish IgG antibodies declined in significant levels, when serological reactivity was compared before and six months after treatment, suggesting also a possible prognostic role of this antigen for TL.


Assuntos
Leishmania , Leishmaniose , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/genética , Humanos , Leishmania/genética , Proteínas Recombinantes de Fusão/genética , Sensibilidade e Especificidade , Testes Sorológicos
5.
Allergy ; 77(10): 2961-2973, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35570583

RESUMO

BACKGROUND: Nontypeable Haemophilus influenzae (NTHi) is a respiratory tract pathobiont that chronically colonizes the airways of asthma patients and is associated with severe, neutrophilic disease phenotypes. The mechanism of NTHi airway persistence is not well understood, but accumulating evidence suggests NTHi can persist within host airway immune cells such as macrophages. We hypothesized that NTHi infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. METHODS: Bronchoalveolar lavage (BAL) samples from 25 severe asthma patients were assessed by fluorescence in situ hybridisation to quantify NTHi presence. Weighted gene correlation network analysis (WGCNA) was performed on RNASeq data from NTHi-infected monocyte-derived macrophages to identify transcriptomic networks associated with NTHi infection. RESULTS: NTHi was detected in 56% of BAL samples (NTHi+) and was associated with longer asthma duration (34 vs 22.5 years, p = .0436) and higher sputum neutrophil proportion (67% vs 25%, p = .0462). WGCNA identified a transcriptomic network of immune-related macrophage genes significantly associated with NTHi infection, including upregulation of T17 inflammatory mediators and neutrophil chemoattractants IL1B, IL8, IL23 and CCL20 (all p < .05). Macrophage network genes SGPP2 (p = .0221), IL1B (p = .0014) and GBP1 (p = .0477) were more highly expressed in NTHi+ BAL and moderately correlated with asthma duration (IL1B; rho = 0.41, p = .041) and lower prebronchodilator FEV1/FVC% (GBP1; rho = -0.43, p = .046 and IL1B; rho = -0.42, p = .055). CONCLUSIONS: NTHi persistence with pulmonary macrophages may contribute to chronic airway inflammation and T17 responses in severe asthma, which can lead to decreased lung function and reduced steroid responsiveness. Identifying therapeutic strategies to reduce the burden of NTHi in asthma could improve patient outcomes.


Assuntos
Asma , Infecções por Haemophilus , Infecções por Haemophilus/complicações , Haemophilus influenzae , Humanos , Inflamação/complicações , Interleucina-8 , Macrófagos Alveolares
6.
Parasite Immunol ; 44(8): e12921, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437797

RESUMO

Treatment against visceral leishmaniasis (VL) presents problems by the toxicity of drugs, high cost and/or emergence of resistant strains. The diagnosis is hampered by variable sensitivity and/or specificity of tests. In this context, prophylactic vaccination could represent a control measure against disease. In this study, the protective efficacy of Leishmania LiHyC protein was evaluated in a murine model against Leishmania infantum infection. LiHyC was used as recombinant protein (rLiHyC) associated with saponin (rLiHyC/S) or Poloxamer 407-based polymeric micelles (rLiHyC/M) to immunize mice. Animals received also saline, saponin or empty micelles as controls. The immunogenicity was evaluated before and after the challenge, and results showed that vaccination with rLiHyC/S or rLiHyC/M induced the production of high levels of interferon-gamma (IFN-γ), interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor in cell culture supernatants, as well as higher IFN-γ expression evaluated by RT-qPCR and involvement from CD4+ and CD8+ T-cell subtypes producing IFN-γ, tumor necrosis factor-α and IL-2. A positive lymphoproliferative response was also found in cell cultures from vaccinated animals, besides high levels of rLiHyC- and parasite-specific nitrite and IgG2a antibodies. Immunological assays correlated with significant reductions in the parasite load in the spleens, livers, bone marrows and draining lymph nodes from vaccinated mice, when compared to values found in the controls. The micellar composition showed slightly better immunological and parasitological data, as compared to rLiHyC/S. Results suggest that rLiHyC associated with adjuvants could be considered for future studies as a vaccine candidate against VL.


Assuntos
Leishmania infantum , Vacinas contra Leishmaniose , Leishmaniose Visceral , Saponinas , Animais , Antígenos de Protozoários , Interferon gama , Interleucina-12 , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Proteínas Recombinantes
7.
Parasitol Res ; 120(12): 4037-4047, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34664113

RESUMO

Visceral leishmaniasis (VL) is a neglected tropical disease of global importance caused by parasites of the genus Leishmania, and coinfection with human immunodeficiency virus (HIV) is common in countries where both diseases are endemic. In particular, widely used immunological tests for VL diagnosis have impaired sensitivity (Se) and specificity (Sp) in VL/HIV coinfected patients and there is also cross-reactivity with other endemic diseases, e.g., Chagas disease, malaria, and tuberculosis. To develop new antigens to improve the diagnosis of VL and VL/HIV coinfection, we predicted eight specific B-cell epitopes of four Leishmania infantum antigens and constructed a recombinant polypeptide chimera antigen called ChimLeish. A serological panel of 195 serum samples was used to compare the diagnostic capabilities of ChimLeish alongside the individual synthetic peptides. ChimLeish reacted with sera from all VL and VL/HIV coinfected patients [Se = 100%; Sp = 100%; area under the curve (AUC) = 1.0]. Peptides showed lower reactivities (Se = 76.8 to 99.2%; Sp = 67.1 to 95.7%; AUC between 0.87 and 0.98) as did a L. infantum antigenic preparation used as an antigen control (Se = 56.8%; Sp = 69.5%: AUC = 0.45). Notably, ChimLeish demonstrated a significant reduction (p < 0.05) of anti-ChimLeish antibodies after treatment and cure of a small number of patients. Although only a limited serological panel was tested, preliminary data suggest that ChimLeish should be evaluated in larger sample studies for the diagnosis of VL and VL/HIV coinfection.


Assuntos
Coinfecção , Infecções por HIV , Leishmania infantum , Leishmaniose Visceral , Antígenos de Protozoários/genética , Coinfecção/diagnóstico , HIV/genética , Infecções por HIV/complicações , Humanos , Leishmaniose Visceral/diagnóstico , Prognóstico , Proteínas Recombinantes de Fusão
8.
PLoS Pathog ; 14(7): e1007080, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975775

RESUMO

The bacterial pathogen Neisseria gonorrhoeae (Gc) infects mucosal sites rich in antimicrobial proteins, including the bacterial cell wall-degrading enzyme lysozyme. Certain Gram-negative bacteria produce protein inhibitors that bind to and inhibit lysozyme. Here, we identify Ng_1063 as a new inhibitor of lysozyme in Gc, and we define its functions in light of a second, recently identified lysozyme inhibitor, Ng_1981. In silico analyses indicated that Ng_1063 bears sequence and structural homology to MliC-type inhibitors of lysozyme. Recombinant Ng_1063 inhibited lysozyme-mediated killing of a susceptible mutant of Gc and the lysozyme-sensitive bacterium Micrococcus luteus. This inhibitory activity was dependent on serine 83 and lysine 103 of Ng_1063, which are predicted to interact with lysozyme's active site residues. Lysozyme co-immunoprecipitated with Ng_1063 and Ng_1981 from intact Gc. Ng_1063 and Ng_1981 protein levels were also increased in Gc exposed to lysozyme. Gc lacking both ng1063 and ng1981 was significantly more sensitive to killing by lysozyme than wild-type or single mutant bacteria. When exposed to human tears or saliva, in which lysozyme is abundant, survival of Δ1981Δ1063 Gc was significantly reduced compared to wild-type, and survival was restored upon addition of recombinant Ng_1981. Δ1981Δ1063 mutant Gc survival was additionally reduced in the presence of human neutrophils, which produce lysozyme. We found that while Ng_1063 was exposed on the surface of Gc, Ng_1981 was both in an intracellular pool and extracellularly released from the bacteria, suggesting that Gc employs these two proteins at multiple spatial barriers to fully neutralize lysozyme activity. Together, these findings identify Ng_1063 and Ng_1981 as critical components for Gc defense against lysozyme. These proteins may be attractive targets for antimicrobial therapy aimed to render Gc susceptible to host defenses and/or for vaccine development, both of which are urgently needed against drug-resistant gonorrhea.


Assuntos
Proteínas de Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Neisseria gonorrhoeae/patogenicidade , Gonorreia/imunologia , Humanos , Muramidase/antagonistas & inibidores , Muramidase/imunologia , Neisseria gonorrhoeae/imunologia
9.
PLoS Pathog ; 13(6): e1006448, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28662181

RESUMO

Pathogenic and commensal Neisseria species produce an Adhesin Complex Protein, which was first characterised in Neisseria meningitidis (Nm) as a novel surface-exposed adhesin with vaccine potential. In the current study, the crystal structure of a recombinant (r)Nm-ACP Type I protein was determined to 1.4 Å resolution: the fold resembles an eight-stranded ß-barrel, stabilized by a disulphide bond between the first (Cys38) and last (Cys121) ß-strands. There are few main-chain hydrogen bonds linking ß4-ß5 and ß8-ß1, so the structure divides into two four-stranded anti-parallel ß-sheets (ß1-ß4 and ß5-ß8). The computed surface electrostatic charge distribution showed that the ß1-ß4 sheet face is predominantly basic, whereas the ß5-ß8 sheet is apolar, apart from the loop between ß4 and ß5. Concentrations of rNm-ACP and rNeisseria gonorrhoeae-ACP proteins ≥0.25 µg/ml significantly inhibited by ~80-100% (P<0.05) the in vitro activity of human lysozyme (HL) over 24 h. Specificity was demonstrated by the ability of murine anti-Neisseria ACP sera to block ACP inhibition and restore HL activity. ACP expression conferred tolerance to HL activity, as demonstrated by significant 3-9 fold reductions (P<0.05) in the growth of meningococcal and gonococcal acp gene knock-out mutants in the presence of lysozyme. In addition, wild-type Neisseria lactamica treated with purified ACP-specific rabbit IgG antibodies showed similar fold reductions in bacterial growth, compared with untreated bacteria (P<0.05). Nm-ACPI is structurally similar to the MliC/PliC protein family of lysozyme inhibitors. However, Neisseria ACP proteins show <20% primary sequence similarity with these inhibitors and do not share any conserved MliC/PliC sequence motifs associated with lysozyme recognition. These observations suggest that Neisseria ACP adopts a different mode of lysozyme inhibition and that the ability of ACP to inhibit lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms. Thus, ACP represents a dual target for developing Neisseria vaccines and drugs to inhibit host-pathogen interactions.


Assuntos
Adesinas Bacterianas/química , Proteínas de Bactérias/química , Interações Hospedeiro-Patógeno/imunologia , Vacinas Meningocócicas/metabolismo , Neisseria meningitidis/metabolismo , Neisseria/química , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Humanos , Muramidase/antagonistas & inibidores , Neisseria/metabolismo , Coelhos
10.
Acta Neuropathol ; 135(3): 363-385, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368214

RESUMO

Meninges that surround the CNS consist of an outer fibrous sheet of dura mater (pachymeninx) that is also the inner periosteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilitators in the foetal CNS. There are two separate CSF systems during early foetal life, inner CSF in the ventricles and outer CSF in the subarachnoid space. As the foramina of Magendi and Luschka develop, one continuous CSF system evolves. Due to the lack of arachnoid granulations during foetal life, it is most likely that CSF is eliminated by lymphatic drainage pathways passing through the cribriform plate and nasal submucosa. (2) We then review the fine structure of the adult human and rodent leptomeninges to establish their roles as barriers and facilitators for the movement of fluid, cells and pathogens. Leptomeningeal cells line CSF spaces, including arachnoid granulations and lymphatic drainage pathways, and separate elements of extracellular matrix from the CSF. The leptomeningeal lining facilitates the traffic of inflammatory cells within CSF but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivascular spaces around arteries in the cerebral cortex. Perivascular spaces surrounding arteries in the white matter and basal ganglia relate to their two encompassing layers of leptomeninges. (3) Finally we examine the roles of ligands expressed by leptomeningeal cells for the attachment of inflammatory cells, bacteria and tumour cells as understanding these roles may aid the design of therapeutic strategies to manage developmental, autoimmune, infectious and neoplastic diseases relating to the CSF, the leptomeninges and the associated CNS.


Assuntos
Meninges/citologia , Meninges/metabolismo , Animais , Humanos , Meninges/irrigação sanguínea , Meninges/microbiologia , Roedores
11.
J Infect Dis ; 215(3): 452-455, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932616

RESUMO

Epithelial shedding and scarring of fallopian tube mucosa are the main consequences of sexually transmitted Neisseria gonorrhoeae infection and probably involve an imbalance of host extracellular matrix components and their regulators such as matrix metalloproteinases (MMPs). In the current study, primary human fallopian tube epithelial cells were infected with N. gonorrhoeae, and MMP patterns were examined. Gonococcal infection induced a significant increase in secreted MMP-9 and an accumulation of cytoplasmic MMP-2 over time, but no significant MMP-3 or MMP-8 production was observed. Thus, MMP-9 in particular could play a role in tubal scarring in response to gonococcal infection.


Assuntos
Células Epiteliais/metabolismo , Tubas Uterinas/citologia , Gonorreia/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neisseria gonorrhoeae/isolamento & purificação , Feminino , Humanos , Mucosa/metabolismo , Técnicas de Cultura de Órgãos , Reino Unido
12.
Infect Immun ; 83(2): 730-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452551

RESUMO

A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (-LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Meningite Meningocócica/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Proteínas de Ligação a Tacrolimo/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Clonagem Molecular , Reações Cruzadas/imunologia , Humanos , Meningite Meningocócica/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Vacinação
13.
Expert Rev Proteomics ; 11(5): 573-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25017717

RESUMO

Neisseria meningitidis (meningococcus) is a major causative organism of meningitis and sepsis and Neisseria gonorrhoeae (gonococcus) is the causative organism of the sexually transmitted disease gonorrhea. Infections caused by meningococci are vaccine-preventable, whereas gonococcal vaccine research and development has languished for decades and the correlates of protection are still largely unknown. In the past two decades, complementary 'omic' platforms have been developed to interrogate Neisseria genomes and gene products. Proteomic techniques applied to whole Neisseria bacteria, outer membranes and outer membrane vesicle vaccines have generated protein maps and also allowed the examination of environmental stresses on protein expression. In particular, immuno-proteomics has identified proteins whose expression is correlated with the development of human natural immunity to meningococcal infection and colonization and following vaccination. Neisseria proteomic techniques have produced a catalog of potential vaccine antigens and investigating the functional and biological properties of these proteins could finally provide 'universal' Neisseria vaccines.


Assuntos
Antígenos de Bactérias/metabolismo , Vacinas Meningocócicas/imunologia , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Proteoma/metabolismo , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Gonorreia/imunologia , Gonorreia/microbiologia , Gonorreia/prevenção & controle , Humanos , Meningite Meningocócica/imunologia , Meningite Meningocócica/prevenção & controle , Neisseria gonorrhoeae/imunologia , Neisseria meningitidis/imunologia , Proteoma/imunologia , Proteômica , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
14.
ACS Appl Mater Interfaces ; 16(17): 21633-21642, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632674

RESUMO

Resistance to antibiotics and antimicrobial compounds is a significant problem for human and animal health globally. The development and introduction of new antimicrobial compounds are urgently needed, and copper oxide nanoparticles (CuO NPs) have found widespread application across various sectors including biomedicine, pharmacy, catalysis, cosmetics, and many others. What makes them particularly attractive is the possibility of their synthesis through biogenic routes. In this study, we synthesized biogenic green tea (GT, Camellia sinensis)-derived CuO NPs (GT CuO NPs) and examined their biophysical properties, in vitro toxicity for mammalian cells in culture, and then tested them against Neisseria gonorrhoeae, an exemplar Gram-negative bacterium from the World Health Organization's Priority Pathogen List. We compared our synthesized GT CuOP NPs with commercial CuO NPs (Com CuO NPs). Com CuO NPs were significantly more cytotoxic to mammalian cells (IC50 of 7.32 µg/mL) than GT CuO NPs (IC50 of 106.1 µg/mL). GT CuO NPs showed no significant increase in bax, bcl2, il6, and il1ß mRNA expression from mammalian cells, whereas there were notable rises after treatment with Com CuO NPs. GT-CuO NPs required concentrations of 0.625 and 3.125 µg/mL to kill 50 and 100% of bacteria, respectively, whereas Com-CuO NPs needed concentrations of 15.625 and 30 µg/mL to kill 50 and 100% of bacteria, and the antibiotic ceftriaxone killed 50 and 100% with 3.125 and 30 µg/mL. Gonococci could be killed within 30 min of exposure to GT CuO NPs and the NPs could kill up to 107 within 1 h. In summary, this is the first report to our knowledge that describes the bioactivity of biogenic CuO NPs against N. gonorrhoeae. Our data suggest that biogenic nanoparticle synthesis has significant advantages over traditional chemical routes of synthesis and highlights the potential of GT-CuO NPs in addressing the challenges posed by multidrug-resistant Neisseria gonorrhoeae infections.


Assuntos
Antibacterianos , Cobre , Nanopartículas Metálicas , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efeitos dos fármacos , Humanos , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana
15.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675459

RESUMO

Chagas disease is a Neglected Tropical Disease with limited and ineffective therapy. In a search for new anti-trypanosomal compounds, we investigated the potential of the metabolites from the bacteria living in the corals and sediments of the southeastern Brazilian coast. Three corals, Tubastraea coccinea, Mussismilia hispida, Madracis decactis, and sediments yielded 11 bacterial strains that were fully identified by MALDI-ToF/MS or gene sequencing, resulting in six genera-Vibrio, Shewanella, Mesoflavibacter, Halomonas, Bacillus, and Alteromonas. To conduct this study, EtOAc extracts were prepared and tested against Trypanosoma cruzi. The crude extracts showed IC50 values ranging from 15 to 51 µg/mL against the trypomastigotes. The bacterium Mesoflavibacter zeaxanthinifaciens was selected for fractionation, resulting in an active fraction (FII) with IC50 values of 17.7 µg/mL and 23.8 µg/mL against the trypomastigotes and amastigotes, respectively, with neither mammalian cytotoxicity nor hemolytic activity. Using an NMR and ESI-HRMS analysis, the FII revealed the presence of unsaturated iso-type fatty acids. Its lethal action was investigated, leading to a protein spectral profile of the parasite altered after treatment. The FII also induced a rapid permeabilization of the plasma membrane of the parasite, leading to cell death. These findings demonstrate that these unsaturated iso-type fatty acids are possible new hits against T. cruzi.

16.
Tuberculosis (Edinb) ; 147: 102505, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583359

RESUMO

Leprosy diagnosis is difficult due to the clinical similarity with other infectious diseases, and laboratory tests presents problems related to sensitivity and/or specificity. In this study, we used bioinformatics to assess Mycobacterium leprae proteins and formulated a chimeric protein that was tested as a diagnostic marker for the disease. The amino acid sequences from ML0008, ML0126, ML0308, ML1057, ML2028, ML2038, ML2498 proteins were evaluated, and the B-cell epitopes QASVAYPATSYADFRAHNHWWNGP, SLQRSISPNSYNTARVDP and QLLGQTADVAGAAKSGPVQPMGDRGSVSPVGQ were considered M. leprae-specific and used to construct the gene encoding the recombinant antigen. The gene was constructed, the recombinant protein was expressed, purified and tested in ELISA using 252 sera, which contained samples from multibacillary (MB) or paucibacillary (PB) leprosy patients, from their household contacts and healthy individuals, as well as from patients with Chagas disease, visceral and tegumentary leishmaniases (VL/TL), malaria, tuberculosis, and HIV. Sensitivity (Se) and specificity (Sp) for MB and PB samples compared to sera from both healthy subjects and individuals with cross-reactive diseases were 100%. The Se value for MB and PB samples compared to sera from household contacts was 100%, but Sp was 64%. In conclusion, data suggest that this protein could be considered in future studies for leprosy diagnosis.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B , Hanseníase Multibacilar , Hanseníase Paucibacilar , Mycobacterium leprae , Testes Sorológicos , Mycobacterium leprae/imunologia , Mycobacterium leprae/genética , Humanos , Epitopos de Linfócito B/imunologia , Testes Sorológicos/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Hanseníase Paucibacilar/diagnóstico , Hanseníase Paucibacilar/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Hanseníase Multibacilar/diagnóstico , Hanseníase Multibacilar/imunologia , Anticorpos Antibacterianos/sangue , Proteínas Recombinantes de Fusão/imunologia , Valor Preditivo dos Testes , Feminino , Masculino , Sensibilidade e Especificidade , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética
17.
Diagn Microbiol Infect Dis ; 109(3): 116338, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718661

RESUMO

The diagnosis if leprosy is difficult, as it requires clinical expertise and sensitive laboratory tests. In this study, we develop a serological test for leprosy by using bioinformatics tools to identify specific B-cell epitopes from Mycobacterium leprae hypothetical proteins, which were used to construct a recombinant chimeric protein, M1. The synthetic peptides were obtained and showed good reactivity to detect leprosy patients, although the M1 chimera have showed sensitivity (Se) and specificity (Sp) values higher than 90.0% to diagnose both paucibacillary (PB) and multibacillary (MB) leprosy patients, but not those developing tegumentary or visceral leishmaniasis, tuberculosis, Chagas disease, malaria, histoplasmosis and aspergillosis, in ELISA experiments. Using sera from household contacts, values for Se and Sp were 100% and 65.3%, respectively. In conclusion, our proof-of-concept study has generated data that suggest that a new recombinant protein could be developed into a diagnostic antigen for leprosy.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Epitopos de Linfócito B , Hanseníase , Mycobacterium leprae , Sensibilidade e Especificidade , Humanos , Mycobacterium leprae/imunologia , Mycobacterium leprae/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Hanseníase/diagnóstico , Hanseníase/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Ensaio de Imunoadsorção Enzimática/métodos , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Masculino , Feminino , Testes Sorológicos/métodos , Biologia Computacional/métodos , Pessoa de Meia-Idade , Adulto Jovem , Adolescente
18.
Pathogens ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37375472

RESUMO

The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.

19.
Life (Basel) ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983820

RESUMO

Chagas disease is an endemic tropical disease caused by the protozoan Trypanosoma cruzi, which affects around 7 million people worldwide, mostly in development countries. The treatment relies on only two available drugs, with severe adverse effects and a limited efficacy. Therefore, the search for new therapies is a legitimate need. Within this context, our group reported the anti-Trypanosoma cruzi activity of gibbilimbol B, a natural alkylphenol isolated from the plant Piper malacophyllum. Two synthetic derivatives, LINS03018 (1) and LINS03024 (2), demonstrated a higher antiparasitic potency and were selected for mechanism of action investigations. Our studies revealed no alterations in the plasma membrane potential, but a rapid alkalinization of the acidocalcisomes. Nevertheless, compound 1 exhibit a pronounced effect in the bioenergetics metabolism, with a mitochondrial impairment and consequent decrease in ATP and reactive oxygen species (ROS) levels. Compound 2 only depolarized the mitochondrial membrane potential, with no interferences in the respiratory chain. Additionally, no macrophages response of nitric oxide (NO) was observed in both compounds. Noteworthy, simple structure modifications in these derivatives induced significant differences in their lethal effects. Thus, this work reinforces the importance of the mechanism of action investigations at the early phases of drug discovery and support further developments of the series.

20.
Acta Trop ; 246: 106986, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453579

RESUMO

Treatment of visceral leishmaniasis (VL) is compromised by drug toxicity, high cost and/or the emergence of resistant strains. Though canine vaccines are available, there are no licensed prophylactic human vaccines. One strategy to improve clinical outcome for infected patients is immunotherapy, which associates a chemotherapy that acts directly to reduce parasitism and the administration of an immunogen-adjuvant that activates the host protective Th1-type immune response. In this study, we evaluated an immunotherapy protocol in a murine model by combining recombinant (r)LiHyp1 (a hypothetical amastigote-specific Leishmania protein protective against Leishmania infantum infection), with monophosphoryl-lipid A (MPLA) as adjuvant and amphotericin B (AmpB) as reference antileishmanial drug. We used this protocol to treat L. infantum infected-BALB/c mice, and parasitological, immunological and toxicological evaluations were performed at 1 and 30 days after treatment. Results showed that mice treated with rLiHyp1/MPLA/AmpB presented the lowest parasite burden in all organs evaluated, when both a limiting dilution technique and qPCR were used. In addition, these animals produced higher levels of IFN-γ and IL-12 cytokines and IgG2a isotype antibody, which were associated with lower production of IL-4 and IL-10 and IgG1 isotype. Furthermore, low levels of renal and hepatic damage markers were found in animals treated with rLiHyp1/MPLA/AmpB possibly reflecting the lower parasite load, as compared to the other groups. We conclude that the rLiHyp1/MPLA/AmpB combination could be considered in future studies as an immunotherapy protocol to treat against VL.


Assuntos
Adjuvantes Imunológicos , Amebicidas , Anfotericina B , Leishmaniose Visceral , Lipídeo A , Proteínas de Protozoários , Leishmaniose Visceral/terapia , Animais , Camundongos , Anfotericina B/uso terapêutico , Amebicidas/uso terapêutico , Imunoterapia , Adjuvantes Imunológicos/uso terapêutico , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Proteínas Recombinantes/uso terapêutico , Proteínas de Protozoários/uso terapêutico , Quimioterapia Combinada , Lipídeo A/uso terapêutico , Protocolos Clínicos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA