Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 606(7915): 663-673, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732761

RESUMO

Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin-orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies. We highlight the fundamental properties of atomically smooth interfaces, the reduced material intermixing, the crystal symmetries and the proximity effects as the key drivers for possible disruptive improvements for MRAM at advanced technology nodes.

2.
Nano Lett ; 24(38): 11889-11894, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39267484

RESUMO

We predict a very large spin-orbit torque (SOT) capability of magnetic chromium-based transition-metal dichalcogenide (TMD) monolayers in their Janus forms CrXTe, with X = S, Se. The structural inversion symmetry breaking, inherent to Janus structures is responsible for a large SOT response generated by giant Rashba splitting, equivalent to that obtained by applying a transverse electric field of ∼100 V nm-1 in non-Janus CrTe2, completely out of experimental reach. By performing transport simulations on carefully derived Wannier tight-binding models, Janus systems are found to exhibit an SOT performance comparable to the most efficient two-dimensional materials, while additionally allowing for field-free perpendicular magnetization switching, due to their reduced in-plane symmetry. Altogether, our findings evidence that magnetic Janus TMDs stand as suitable candidates for ultimate SOT-MRAM devices in an ultracompact self-induced SOT scheme.

3.
Nano Lett ; 24(43): 13465-13472, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39433297

RESUMO

Recent experiments by S. Krishnia et al. [Nano Lett. 2023, 23, 6785] reported an unprecedentedly large enhancement of torques upon inserting thin Al layer in Co/Pt heterostructure that suggested the presence of a Rashba-like interaction at the metallic Co/Al interface. Based on first-principles calculations, we reveal the emergence of a large helical orbital texture in reciprocal space at the interfacial Co layer, whose origin is attributed to the orbital Rashba effect due to the formation of the surface states at the Co/Al interface and where spin-orbit coupling is found to produce smaller contributions with a higher-order winding of the orbital moments. Our results unveil that the orbital texture gives rise to a nonequilibrium orbital accumulation producing large current-induced torques, thus providing an essential theoretical background for the experimental data and advancing the use of orbital transport phenomena in all-metallic magnetic systems with light elements.

4.
Nano Lett ; 23(1): 34-41, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535029

RESUMO

2D materials offer the ability to expose their electronic structure to manipulations by a proximity effect. This could be harnessed to craft properties of 2D interfaces and van der Waals heterostructures in devices and quantum materials. We explore the possibility to create an artificial spin polarized electrode from graphene through proximity interaction with a ferromagnetic insulator to be used in a magnetic tunnel junction (MTJ). Ferromagnetic insulator/graphene artificial electrodes were fabricated and integrated in MTJs based on spin analyzers. Evidence of the emergence of spin polarization in proximitized graphene layers was observed through the occurrence of tunnel magnetoresistance. We deduced a spin dependent splitting of graphene's Dirac band structure (∼15 meV) induced by the proximity effect, potentially leading to full spin polarization and opening the way to gating. The extracted spin signals illustrate the potential of 2D quantum materials based on proximity effects to craft spintronics functionalities, from vertical MTJs memory cells to logic circuits.

5.
Nano Lett ; 22(24): 10128-10133, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36520645

RESUMO

The Dzyaloshinskii-Moriya interaction (DMI) that arises in the magnetic systems with broken inversion symmetry plays an essential role in topological spintronics. Here, by means of atomistic spin calculations, we study an intriguing type of DMI (g-DMI) that emerges in the films with composition gradient. We show that both the strength and chirality of g-DMI can be controlled by the composition gradient even in the disordered system. The layer-resolved analysis of g-DMI unveils its additive nature inside the bulk layers and clarifies the linear thickness dependence of g-DMI observed in experiments. Furthermore, we demonstrate the g-DMI-induced chiral magnetic structures, such as spin spirals and skyrmions, and the g-DMI driven field-free spin-orbit torque (SOT) switching, both of which are crucial toward practical device application. These results elucidate the underlying mechanisms of g-DMI and open up a new way to engineer the topological magnetic textures.


Assuntos
Torque
6.
Nano Lett ; 21(17): 7138-7144, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432472

RESUMO

We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interfaces, it is found that the DMI in the latter increases as a function of Co thickness and beyond three monolayers stabilizes with 1 order of magnitude larger values compared to those at graphene/Co, where the DMI shows opposite decreasing behavior. Meanwhile, the PMA for both systems shows similar trends with larger values for graphene/Co and no significant variations for all thickness ranges of Co. Furthermore, using micromagnetic simulations we demonstrate that such significant DMI and PMA values remaining stable over a large range of Co thickness give rise to the formation of skyrmions with small applied external fields. These findings open up further possibilities toward integrating two-dimensional (2D) materials in spin-orbitronics devices.

7.
Nano Lett ; 21(6): 2580-2587, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33705154

RESUMO

Spin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices, in particular based on domain wall (DW) motion. In this work, we report the study of STT-driven DW motion in ferrimagnetic manganese nickel nitride (Mn4-xNixN) films, in which magnetization and angular momentum compensation can be obtained by the fine adjustment of the Ni content. Large domain wall velocities, approaching 3000 m/s, are measured for Ni compositions close to the angular momentum compensation point. The reversal of the DW motion direction, observed when the compensation composition is crossed, is related to the change of direction of the angular momentum with respect to that of the spin polarization. This is confirmed by the results of ab initio band structure calculations.

8.
Nano Lett ; 19(5): 3019-3026, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30933564

RESUMO

Study of resonant tunneling through multimetallic quantum well (QW) structure is not only important for the fundamental understanding of quantum transport but also for the great potential to generate advanced functionalities of spintronic devices. However, it remains challenging to engineer such a structure due to the short electron phase coherence length in metallic QW system. Here, we demonstrate the successful fabrication of double-QW structure in a single fully epitaxial magnetic tunnel junction (MTJ) heterostructure, where two Fe QW layers are sandwiched between three MgAlO x tunnel barriers. We show clear evidence of the coherent resonant tunneling through the discrete QW states in the two QWs. The coherent resonant tunneling condition is fulfilled only when the middle barrier between the two QWs is thin enough and available QW states are present simultaneously in both QWs under a certain bias. Compared to the single QW structure, the resonant tunneling in double-QW MTJ produces strong conductivity oscillations with much narrower peak width (about half) owing to the enhanced energy filtering effect. This study presents a comprehensive understanding of the resonant tunneling mechanism in MTJ with multiple QWs, which is essential for future development of new spintronic devices operating in the quantum tunneling regime.

9.
Nat Mater ; 17(7): 605-609, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807987

RESUMO

The possibility of utilizing the rich spin-dependent properties of graphene has attracted much attention in the pursuit of spintronics advances. The promise of high-speed and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. Here we demonstrate that chiral spin textures are induced at graphene/ferromagnetic metal interfaces. Graphene is a weak spin-orbit coupling material and is generally not expected to induce a sufficient Dzyaloshinskii-Moriya interaction to affect magnetic chirality. We demonstrate that indeed graphene does induce a type of Dzyaloshinskii-Moriya interaction due to the Rashba effect. First-principles calculations and experiments using spin-polarized electron microscopy show that this graphene-induced Dzyaloshinskii-Moriya interaction can have a similar magnitude to that at interfaces with heavy metals. This work paves a path towards two-dimensional-material-based spin-orbitronics.

10.
Nano Lett ; 18(8): 4871-4877, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29924621

RESUMO

Electric control of magnetism is a prerequisite for efficient and low-power spintronic devices. More specifically, in heavy metal-ferromagnet-insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties such as interface anisotropy and saturation magnetization. However, its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI), which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and has not been reported yet for ultrathin films. Here, we demonstrate a 130% variation of DMI with electric field in Ta/FeCoB/TaO x trilayer through Brillouin Light Spectroscopy (BLS). Using polar magneto-optical Kerr-effect microscopy, we further show a monotonic variation of DMI and skyrmionic bubble size with electric field with an unprecedented efficiency. We anticipate through our observations that a sign reversal of DMI with an electric field is possible, leading to a chirality switch. This dynamic manipulation of DMI establishes an additional degree of control to engineer programmable skyrmion-based memory or logic devices.

11.
Phys Rev Lett ; 120(17): 176802, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756815

RESUMO

A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

12.
Phys Rev Lett ; 118(21): 219901, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598656

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.115.267210.

13.
Nano Lett ; 16(1): 145-51, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26641927

RESUMO

We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25 Å. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis, which help understanding of the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose superexchange stabilized Co-graphene heterostructures with a robust constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point toward possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20-times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies.

14.
Phys Rev Lett ; 115(26): 267210, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765026

RESUMO

The Dzyaloshinskii-Moriya interaction (DMI) has been recently recognized to play a crucial role in allowing fast domain wall dynamics driven by spin-orbit torques and the generation of magnetic Skyrmions. Here, we unveil the main features and microscopic mechanisms of DMI in Co/Pt bilayers via first principles calculations. We find that the large DMI of the bilayers has a dominant contribution from the spins of the interfacial Co layer. This DMI between the interfacical Co spins extends very weakly away from the interface and is associated with a spin-orbit coupling in the adjacent atomic layer of Pt. Furthermore, no direct correlation is found between DMI and proximity induced magnetism in Pt. These results clarify the underlying mechanisms of DMI at interfaces between ferromagnetic and heavy metals and should help optimizing material combinations for domain wall and Skyrmion-based devices.

15.
Nat Commun ; 15(1): 4459, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796433

RESUMO

The magnetic proximity effect can induce a spin dependent exchange shift in the band structure of graphene. This produces a magnetization and a spin polarization of the electron/hole carriers in this material, paving the way for its use as an active component in spintronics devices. The electrostatic control of this spin polarization in graphene has however never been demonstrated so far. We show that interfacing graphene with the van der Waals antiferromagnet CrSBr results in an unconventional manifestation of the quantum Hall effect, which can be attributed to the presence of counterflowing spin-polarized edge channels originating from the spin-dependent exchange shift in graphene. We extract an exchange shift ranging from 27 - 32 meV, and show that it also produces an electrostatically tunable spin polarization of the electron/hole carriers in graphene ranging from - 50% to + 69% in the absence of a magnetic field. This proof of principle provides a starting point for the use of graphene as an electrostatically tunable source of spin current and could allow this system to generate a large magnetoresistance in gate tunable spin valve devices.

16.
Adv Mater ; 36(33): e2401611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848668

RESUMO

Integrating tunneling magnetoresistance (TMR) effect in memristors is a long-term aspiration because it allows to realize multifunctional devices, such as multi-state memory and tunable plasticity for synaptic function. However, the reported TMR in different multiferroic tunnel junctions is limited to 100%. This work demonstrates a giant TMR of -266% in La0.6Sr0.4MnO3(LSMO)/poly(vinylidene fluoride)(PVDF)/Co memristor with thin organic barrier. Different from the ferroelectricity-based memristors, this work discovers that the voltage-driven florine (F) motion in the junction generates a huge reversible resistivity change up to 106% with nanosecond (ns) timescale. Removing F from PVDF layer suppresses the dipole field in the tunneling barrier, thereby significantly enhances the TMR. Furthermore, the TMR can be tuned by different polarizing voltage due to the strong modification of spin-polarization at the LSMO/PVDF interface upon F doping. Combining of high TMR in the organic memristor paves the way to develop high-performance multifunctional devices for storage and neuromorphic applications.

17.
Adv Mater ; 36(14): e2304243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160244

RESUMO

2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as-grown PtSe2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe2 unaffected, resulting in well-defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness-dependent electronic structure of PtSe2 allows the control of SCC. Indeed, the transition from the inverse Rashba-Edelstein effect (IREE) in 1-3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.

18.
Natl Sci Rev ; 9(12): nwac021, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36713589

RESUMO

Logic gates based on magnetic elements are promising candidates for logic-in-memory applications with non-volatile data retention, near-zero leakage and scalability. In such spin-based logic devices, however, the multi-strip structure and fewer functions are obstacles to improving integration and reducing energy consumption. Here we propose a skyrmions-based single-nanotrack logic family including AND, OR, NOT, NAND, NOR, XOR and XNOR that can be implemented and reconstructed by building and switching the Dzyaloshinskii-Moriya interaction (DMI) chirality barrier on a racetrack memory. Besides the pinning effect of the DMI chirality barrier on skyrmions, the annihilation, fusion and shunting of two skyrmions with opposite chirality are also achieved and demonstrated via local reversal of the DMI, which are necessary for the design of an engineer programmable logic nanotrack, transistor and complementary racetrack memory.

19.
ACS Appl Mater Interfaces ; 14(39): 44581-44590, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129787

RESUMO

Magneto-ionics is an emerging actuation mechanism to control the magnetic properties of materials via voltage-driven ion motion. This effect largely relies on the strength and penetration of the induced electric field into the target material, the amount of generated ion transport pathways, and the ionic mobility inside the magnetic media. Optimizing all these factors in a simple way is a huge challenge, although highly desirable for technological applications. Here, we demonstrate that the introduction of suitable transition-metal elements to binary nitride compounds can drastically boost magneto-ionics. More specifically, we show that the attained magneto-ionic effects in CoN films (i.e., saturation magnetization, toggling speeds, and cyclability) can be drastically enhanced through 10% substitution of Co by Mn in the thin-film composition. Incorporation of Mn leads to transformation from nanocrystalline into amorphous-like structures, as well as from metallic to semiconducting behaviors, resulting in an increase of N-ion transport channels. Ab initio calculations reveal a lower energy barrier for CoMn-N compared to Co-N that provides a fundamental understanding of the crucial role of Mn addition in the voltage-driven magnetic effects. These results constitute an important step forward toward enhanced voltage control of magnetism via electric field-driven ion motion.

20.
ACS Nano ; 16(5): 6960-7079, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35442017

RESUMO

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.


Assuntos
Metodologias Computacionais , Teoria Quântica , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA