Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532423

RESUMO

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Células Jurkat , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Fosforilação , Ativação Linfocitária , Tirosina/metabolismo
2.
J Immunol ; 208(7): 1534-1544, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264458

RESUMO

Recent evidence from several autoimmune animal models has demonstrated that TRAIL suppresses the activation of T cells and inhibits autoimmune inflammation via an apoptosis-independent pathway. However, it remains unclear whether the immunosuppressive effects of TRAIL are dependent on its direct effects on T cells or on other immune cells to regulate T cells for the induction of disease. Therefore, we generated mice with T cell-specific TRAIL receptor (TRAIL-R) conditional knockout to investigate the impact of TRAIL on autoimmune inflammation and disease induction in experimental autoimmune encephalomyelitis (EAE). T cell-specific TRAIL-R knockout mice were found to completely reverse the TRAIL-mediated suppression of inflammation and disease induction, indicating that TRAIL-R on T cells is essential for TRAIL-mediated suppression of inflammation and disease induction in EAE. Moreover, the immune suppression effects were not due to the induction of cell apoptosis, but to the direct inhibition of T cell activation. In addition, RNA sequencing and transcriptome analysis revealed that TRAIL-R signaling significantly downregulated the genes involved in TCR signaling pathways, T cell differentiation, and proinflammatory cytokines. These results indicate that TRAIL-R on T cells is critical for pathologic T cell activation and induction of inflammation in EAE, suggesting that TRAIL-R serves as a novel immune checkpoint receptor in T cell-mediated autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T , Ligante Indutor de Apoptose Relacionado a TNF
3.
J Immunol ; 204(6): 1448-1461, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32060137

RESUMO

Tris (dibenzylideneacetone) dipalladium (Tris DBA), a small-molecule palladium complex, has been shown to inhibit cell growth and proliferation in pancreatic cancer, lymphocytic leukemia, and multiple myeloma. In the current study, we examined the therapeutic effects of Tris DBA on glomerular cell proliferation, renal inflammation, and immune cells. Treatment of accelerated and severe lupus nephritis (ASLN) mice with Tris DBA resulted in improved renal function, albuminuria, and pathology, including measurements of glomerular cell proliferation, cellular crescents, neutrophils, fibrinoid necrosis, and tubulointerstitial inflammation in the kidneys as well as scoring for glomerulonephritis activity. The treated ASLN mice also showed significantly decreased glomerular IgG, IgM, and C3 deposits. Furthermore, the compound was able to 1) inhibit bone marrow-derived dendritic cell-mediated T cell functions and reduce serum anti-dsDNA autoantibody levels; 2) differentially regulate autophagy and both the priming and activation signals of the NLRP3 inflammasome; and 3) suppress the phosphorylation of JNK, ERK, and p38 MAPK signaling pathways. Tris DBA improved ASLN in mice through immunoregulation by blunting the MAPK (ERK, JNK)-mediated priming signal of the NLRP3 inflammasome and by regulating the autophagy/NLRP3 inflammasome axis. These results suggest that the pure compound may be a drug candidate for treating the accelerated and deteriorated type of lupus nephritis.


Assuntos
Inflamassomos/antagonistas & inibidores , Nefrite Lúpica/tratamento farmacológico , Ativação Linfocitária/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Autofagia/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Glomérulos Renais/imunologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Compostos Organometálicos/uso terapêutico , Índice de Gravidade de Doença , Linfócitos T Reguladores/efeitos dos fármacos
4.
J Formos Med Assoc ; 121(12): 2446-2456, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35599104

RESUMO

BACKGROUND/PURPOSE: Recent emerging evidence indicates that dysfunction of metabolic remodeling underlies aberrant T cell immune responses in systemic lupus erythematosus (SLE). This study was undertaken to investigate the expression of HIF-1α, a regulator of metabolic reprogramming, in T cells from SLE. METHODS: HIF-1α expression in T lymphocytes from SLE patients was examined by quantitative polymerase chain reaction (PCR) and the protein expression was analyzed with intracellular staining in flow cytometry. HIF-1α was overexpressed in murine CD4 T cells via transducing T cells with HIF-1α containing lentivirus. The expression of HIF-1α, metabolic- and Th17-associated genes in T cells from SLE patients and its association with clinical manifestation was analyzed. RESULTS: HIF-1α expression is increased in CD4 T cells from SLE patients both in intracellular staining and quantitative PCR analysis. In addition, there is enhanced HIF-1α expression in Th17-skewing murine T cells, and lentivirus-mediated HIF-1α overexpression promotes Th17 differentiation. Moreover, HIF-1α gene expression is positively correlated with the expression of glycolysis- and IL-17-associated genes in SLE patients. CONCLUSION: HIF-1α expression is increased in T cells from SLE patients, and is positively correlated with glycolysis- and Th17- associated pathway, implicating HIF-1α contributes to the activation of Th17 cells in SLE, and represents a potential novel therapeutic target.


Assuntos
Lúpus Eritematoso Sistêmico , Células Th17 , Humanos , Camundongos , Animais , Células Th17/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Linfócitos T CD4-Positivos/metabolismo , Citometria de Fluxo , Diferenciação Celular
5.
Nephrol Dial Transplant ; 35(1): 74-85, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065699

RESUMO

BACKGROUND: Renal tubulointerstitial lesions (TILs), a key pathological hallmark for chronic kidney disease to progress to end-stage renal disease, feature renal tubular atrophy, interstitial mononuclear leukocyte infiltration and fibrosis in the kidney. Our study tested the renoprotective and therapeutic effects of compound K (CK), as described in our US patent (US7932057B2), on renal TILs using a mouse unilateral ureteral obstruction (UUO) model. METHODS: Renal pathology was performed and renal draining lymph nodes were subjected to flow cytometry analysis. Mechanism-based experiments included the analysis of mitochondrial dysfunction, a model of tubular epithelial cells (TECs) under mechanically induced constant pressure (MICP) and tandem mass tags (TMT)-based proteomics analysis. RESULTS: Administration of CK ameliorated renal TILs by reducing urine levels of proinflammatory cytokines, and preventing mononuclear leukocyte infiltration and fibrosis in the kidney. The beneficial effects clearly correlated with its inhibition of: (i) NF-κB-associated priming and the mitochondria-associated activating signals of the NLRP3 inflammasome; (ii) STAT3 signalling, which in part prevents NLRP3 inflammasome activation; and (iii) the TGF-ß-dependent Smad2/Smad3 fibrotic pathway, in renal tissues, renal TECs under MICP and/or activated macrophages, the latter as a major inflammatory player contributing to renal TILs. Meanwhile, TMT-based proteomics analysis revealed downregulated renal NLRP3 inflammasome activation-associated signalling pathways in CK-treated UUO mice. CONCLUSIONS: The present study, for the first time, presents the potent renoprotective and therapeutic effects of CK on renal TILs by targeting the NLRP3 inflammasome and STAT3 signalling.


Assuntos
Ginsenosídeos/farmacologia , Inflamassomos/efeitos dos fármacos , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrite Intersticial/tratamento farmacológico , Obstrução Ureteral/tratamento farmacológico , Animais , Inflamassomos/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
6.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 687-696, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131718

RESUMO

Erythropoietin (EPO) and GM-CSF are involved in erythropoiesis, while TGF-ß inhibits proliferation but potentiates differentiation of erythroblasts. Since Syk inhibitor may induce anemia side effect in clinic, here we investigated the role of Syk in the biological actions of EPO and GM-CSF in erythropoiesis. In human erythroleukemia cell line TF-1, Syk inhibitor R406 exerts an enhancement effect with TGF-ß to decrease cell viability, either in the absence or presence of EPO or GM-CSF. Such effect of R406 results from the reduced cell cycle progression and increased cell apoptosis. Notably, unlike Syk, Src family kinases are not involved in the viability control of TF-1 cells. Signaling studies showed that Syk is required for STAT5 and ERK activation induced by EPO, and Akt and ERK activation induced by GM-CSF. Nevertheless, R406 does not change the Smad2/3 signal caused by TGF-ß, and TGF-ß neither affects above signal pathways of EPO and GM-CSF. Of note, Syk is constitutively associated with EPOR in plasma membrane and can bind to STAT5 at active status upon EPO stimulation. Furthermore, EPO-induced hemoglobin γ expression was reduced by R406. In BFU-E and CFU-E colony formation assays in Syk-deficient erythroid progenitor cells, we confirmed the essential role of Syk in erythropoiesis mediated by EPO. Taken together, Syk is a novel upstream signaling molecule of EPOR, and contributes to erythroblast proliferation, survival and differentiation.


Assuntos
Eritropoese/genética , Eritropoetina/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Leucócitos/efeitos dos fármacos , Quinase Syk/genética , Fator de Crescimento Transformador beta/genética , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feto , Regulação da Expressão Gênica , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Fator de Crescimento Transformador beta/metabolismo
7.
J Am Soc Nephrol ; 28(7): 2022-2037, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28179433

RESUMO

IL-36 cytokines are proinflammatory and have an important role in innate and adaptive immunity, but the role of IL-36 signaling in renal tubulointerstitial lesions (TILs), a major prognostic feature of renal inflammation and fibrosis, remains undetermined. In this study, increased IL-36α expression detected in renal biopsy specimens and urine samples from patients with renal TILs correlated with renal function impairment. We confirmed the increased expression of IL-36α in the renal tubular epithelial cells of a mouse model of unilateral ureteral obstruction (UUO) and related cell models using mechanically induced pressure, oxidative stress, or high mobility group box 1. In contrast, the kidneys of IL-36 receptor (IL-36R) knockout mice exhibit attenuated TILs after UUO. Compared with UUO-treated wild-type mice, UUO-treated IL-36 knockout mice exhibited markedly reduced NLRP3 inflammasome activation and macrophage/T cell infiltration in the kidney and T cell activation in the renal draining lymph nodes. In vitro, recombinant IL-36α facilitated NLRP3 inflammasome activation in renal tubular epithelial cells, macrophages, and dendritic cells and enhanced dendritic cell-induced T cell proliferation and Th17 differentiation. Furthermore, deficiency of IL-23, which was diminished in IL-36R knockout UUO mice, also reduced renal TIL formation in UUO mice. In wild-type mice, administration of an IL-36R antagonist after UUO reproduced the results obtained in UUO-treated IL-36R knockout mice. We propose that IL-36 signaling contributes to the pathogenesis of renal TILs through the activation of the NLRP3 inflammasome and IL-23/IL-17 axis.


Assuntos
Inflamassomos/fisiologia , Interleucina-17/fisiologia , Interleucina-1/fisiologia , Interleucina-23/fisiologia , Rim/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Nefrite/etiologia , Transdução de Sinais , Animais , Fibrose/etiologia , Humanos , Camundongos , Obstrução Ureteral/etiologia
8.
J Sci Food Agric ; 98(14): 5509-5517, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29691866

RESUMO

BACKGROUND: Gold lotion (GL), a natural mixed product made from the peels of six citrus fruits, has recently been identified as possessing anti-oxidative, anti-inflammatory, and immunomodulatory effects. GL has been used to protect skin against UV-induced damage, but its activity against psoriasis, a chronic autoimmune skin disease caused by dysregulation between immune cells and keratinocytes, is not known. We therefore evaluated the effect of GL on imiquimod (IMQ)-induced psoriasis-like inflammation in mice. RESULTS: GL treatment significantly attenuated IMQ-induced psoriasis-like symptoms in mice. The inflammatory cytokines upregulated by IMQ in skin lesions were also inhibited by feeding GL. In addition, GL treatment reduced the infiltration of CD4+ T cells/neutrophils in skin lesions and the percentage of IL-17-/IL-22-producing T cells in lymph nodes. Furthermore, GL impaired IMQ-induced type I interferon production by plasmacytoid dendritic cells (pDCs) in vitro. CONCLUSION: Our results indicate GL can act to suppress the initiation of psoriasis and strongly suggest that GL may have potential to be applied to the treatment of psoriasis. © 2018 Society of Chemical Industry.


Assuntos
Aminoquinolinas/efeitos adversos , Citrus/química , Dermatite/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Psoríase/tratamento farmacológico , Animais , Citocinas/imunologia , Dermatite/etiologia , Dermatite/imunologia , Frutas/química , Humanos , Imiquimode , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Psoríase/induzido quimicamente , Psoríase/imunologia
9.
PLoS Pathog ; 11(7): e1004985, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132276

RESUMO

Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.


Assuntos
Histoplasmose/imunologia , Lectinas Tipo C/imunologia , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Microdomínios da Membrana/imunologia , Transdução de Sinais/imunologia , Animais , Western Blotting , Citocinas/biossíntese , Citocinas/imunologia , Imunofluorescência , Histoplasma , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , MAP Quinase Quinase 4/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas Tirosina Quinases/imunologia , RNA Interferente Pequeno , Receptor Cross-Talk/imunologia , Quinase Syk , Fator de Transcrição AP-1/imunologia , Transfecção
10.
J Cell Mol Med ; 18(7): 1344-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24758719

RESUMO

Toll-like receptors (TLR) recognize pathogens and trigger the production of vigorous pro-inflammatory cytokines [such as tumour necrosis factor (TNF)] that induce systemic damages associated with sepsis and chronic inflammation. Cooperation between signals of TLR and TNF receptor has been demonstrated through the participation of TNF receptor 1 (TNFR) adaptors in endotoxin tolerance. Here, we identify a TLR2-mediated synergy, through a MyD88-independent crosstalk, which enhances subsequent TNF-mediated nuclear factor-kappa B activation and interleukin-6 induction. Membrane-associated adaptor MAL conduces the link between TNF receptor-associated factor 6 (TRAF6) and TNFR-associated death domain, leading to a distinctive K63-ubiquitinylated TRAF6 recruitment into TNFR complex. In summary, our results reveal a novel route of TLR signal that synergistically amplifies TNF-mediated responses, indicating an innovative target for inflammation manipulation.


Assuntos
Regulação da Expressão Gênica , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Proteína de Domínio de Morte Associada a Receptor de TNF/fisiologia , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Western Blotting , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Humanos , Imunoprecipitação , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 2 Toll-Like/genética
11.
J Immunol ; 189(4): 1671-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22798680

RESUMO

Previous studies have shown that TGF-ß acts cooperatively with IL-6 to elicit a high frequency of IL-17-secreting CD4(+) T cells (termed Th17) and an elevated CD8(+)IL-17(+) T cell population (termed Tc17). These CD8(+) cells fail to behave like most cytotoxic T lymphocytes that express IFN-γ and granzyme B, but they exhibit a noncytotoxic phenotype. Although a significant increase in the number of these Tc17 cells was found in tumors, their role and interaction with other cell types remain unclear. In this study, we demonstrate that the presence of CD4(+)CD25(-) T cells, but not the CD4(+)CD25(+) (regulatory T [Treg]) cell population, significantly reduced the elicitation of Tc17 cells, possibly as a result of the induction of apoptotic signals. Importantly, these signals may be derived from soluble mediators, and the addition of anti-IL-2 restored the reduction of Tc17 cells in the presence of CD4(+)CD25(-) T cells. Finally, the elicited Tc17 and Treg cells exhibited a close association in patients with head and neck cancer, indicating that the surrounding Treg cells might maintain the survival of the Tc17 cells. Taken together, these results reveal an intriguing mechanism in which Tc17 cells are controlled by a finely tuned collaboration between the different types of CD4(+) T cells in distinct tumor microenvironments.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Comunicação Celular/imunologia , Interleucina-17/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apoptose , Linfócitos T CD4-Positivos/citologia , Carcinoma de Células Escamosas/imunologia , Polaridade Celular , Técnicas de Cocultura , Feminino , Citometria de Fluxo , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Microambiente Tumoral/imunologia
12.
J Periodontol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523602

RESUMO

BACKGROUND: This study aimed to investigate the contribution of myeloid differentiation primary-response gene 88 (MyD88) on the differentiation of T helper type 17 (Th17) and regulatory T (Treg) cells and the emerging subgingival microbiota dysbiosis in Porphyromonas gingivalis-induced experimental periodontitis. METHODS: Alveolar bone loss, infiltrated inflammatory cells, immunostained cells for tartrate-resistant acid phosphatase (TRAP), the receptor activator of nuclear factor-kB ligand (RANKL), and osteoprotegerin (OPG) were quantified by microcomputerized tomography and histological staining between age- and sex-matched homozygous littermates (wild-type [WT, Myd88+/+] and Myd88-/- on C57BL/6 background). The frequencies of Th17 and Treg cells in cervical lymph nodes (CLNs) and spleen were determined by flow cytometry. Cytokine expression in gingival tissues, CLNs, and spleens were studied by quantitative polymerase chain reaction (qPCR). Analysis of the composition of the subgingival microbiome and functional annotation of prokaryotic taxa (FAPROTAX) analysis were performed. RESULTS: P. gingivalis-infected Myd88-/- mice showed alleviated bone loss, TRAP+ osteoclasts, and RANKL/OPG ratio compared to WT mice. A significantly higher percentage of Foxp3+CD4+ T cells in infected Myd88-/- CLNs and a higher frequency of RORγt+CD4+ T cells in infected WT mice was noted. Increased IL-10 and IL-17a expressions in gingival tissue at D14-D28 then declined in WT mice, whereas an opposite pattern was observed in Myd88-/- mice. The Myd88-/- mice exhibited characteristic increases in gram-positive species and species having probiotic properties, while gram-negative, anaerobic species were noted in WT mice. FAPROTAX analysis revealed increased aerobic chemoheterotrophy in Myd88-/- mice, whereas anaerobic chemoheterotrophy was noted in WT mice after P. gingivalis infection. CONCLUSIONS: MyD88 plays an important role in inflammation-induced bone loss by modulating the dynamic equilibrium between Th17/Treg cells and dysbiosis in P. gingivalis-induced experimental periodontitis.

13.
Clin Dev Immunol ; 2013: 125643, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23781253

RESUMO

Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.


Assuntos
Antitussígenos/farmacologia , Células Dendríticas/efeitos dos fármacos , Dextrometorfano/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
14.
Mar Drugs ; 11(4): 1336-50, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609581

RESUMO

Dendritic cells (DCs) are antigen presenting cells, which can present antigens to T-cells and play an important role in linking innate and adaptive immunity. DC maturation can be induced by many stimuli, including pro-inflammatory cytokines and bacterial products, such as lipopolysaccharides (LPS). Here, we examined the immunomodulatory effects of marine cembrane compounds, (9E,13E)-5-acetoxy-6-hydroxy-9,13-dimethyl-3- methylene-3,3a,4,5,6,7,8,11,12,14a-decahydro-2H-cyclotrideca[b]furan-2-one (1), (9E,13E)- 5-acetoxy-6-acetyl-9,13-dimethyl-3-methylene-3,3a,4,5,6,7,8,11,12,14a-decahydro-2H-cyclotrideca[b]furan-2-one (2), lobocrassin B (3), (-)14-deoxycrassin (4), cembranolide B (5) and 13-acetoxysarcocrassolide (6) isolated from a soft coral, Lobophytum crassum, on mouse bone marrow-derived dendritic cells (BMDCs). The results revealed that cembrane-type diterpenoids, especially lobocrassin B, effectively inhibited LPS-induced BMDC activation by inhibiting the production of TNF-α. Pre-treatment of BMDCs with Lobocrassin B for 1 h is essential to prohibit the following activation induced by various toll-like receptor (TLR) agonists, such as LPS, zymosan, lipoteichoic acid (LTA) and Pam2CSK4. Inhibition of NF-κB nuclear translocation by lobocrassin B, which is a key transcription factor for cytokine production in TLR signaling, was evident as assayed by high-content image analysis. Lobocrassin B attenuated DC maturation and endocytosis as the expression levels of MHC class II and the co-stimulatory molecules were downregulated, which may affect the function of DCs to initiate the T-cell responses. Thus, lobocrassin B may have the potential in treatment of immune dysregulated diseases in the future.


Assuntos
Antozoários/metabolismo , Células Dendríticas/efeitos dos fármacos , Diterpenos/farmacologia , Fatores Imunológicos/farmacologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Dendríticas/imunologia , Diterpenos/isolamento & purificação , Endocitose/efeitos dos fármacos , Fatores Imunológicos/isolamento & purificação , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Tempo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
15.
J Sci Food Agric ; 93(1): 76-84, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22689051

RESUMO

BACKGROUND: Myricetin is a naturally occurring flavonoid that is found in many fruits, vegetables, teas and medicinal herbs. It has been demonstrated to have anti-inflammatory properties, but, to date, no studies have described the immunomodulatory effects of myricetin on the functions of dendritic cells (DCs). The aim of this study was to evaluate the potential for myricetin to modulate lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs. RESULTS: Our experimental data showed that treatment with myricetin up to 10 µg mL(-1) does not cause cytotoxicity in cells. Myricetin significantly decreased the secretion of tumour necrosis factor-α, interleukin-6 and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility class II, CD40 and CD86 on DCs was also inhibited by myricetin, and the endocytic and migratory capacity of LPS-stimulated DCs was blocked by myricentin. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was reduced by myricetin. Moreover, our results confirmed that myricetin attenuates the responses of LPS-stimulated activation of DCs via suppression of IκB kinase/nuclear factor-κB and mitogen-activated protein kinase-dependent pathways. CONCLUSION: Myricetin has novel immunopharmacological activity, and modulation of DCs by myricetin may be an attractive strategy for the treatment of inflammatory and autoimmune disorders, and for transplantation.


Assuntos
Anti-Inflamatórios/farmacologia , Medula Óssea/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Flavonoides/farmacologia , Fatores Imunológicos/farmacologia , Inflamação/imunologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Antígenos/metabolismo , Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Flavonoides/uso terapêutico , Quinase I-kappa B/metabolismo , Fatores Imunológicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucinas/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Quinase Induzida por NF-kappaB
16.
Immunol Rev ; 232(1): 42-58, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19909355

RESUMO

The adapter proteins DAP12 and FcRgamma associate with a wide spectrum of receptors in a variety of innate immune cells to mediate intracellular signaling pathways when their cognate receptor is engaged. These adapter proteins are coupled to their receptors through charged residues within the transmembrane regions of the adapter and receptor. DAP12 and FcRgamma contain specific protein domains (referred to as immunoreceptor tyrosine-based activation motifs) that serve as the substrates and docking sites for kinases, allowing amplification of intracellular signaling reactions. Recent research has broadened the repertoire of receptors that utilize these adapters for signaling to include not only novel immunoglobulin superfamily members but also cytokine receptors, integrins, and other adhesion molecules. There is abundant evidence that these multifunctional signaling adapters also mediate inhibitory activity, downmodulating signaling from Toll-like receptors and other heterologous receptors. In this review, we discuss the newly described receptors that utilize DAP12 and/or FcRgamma adapters to modulate innate immune responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Receptores de IgG/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/imunologia , Células Mieloides/citologia , Células Mieloides/imunologia , Domínios e Motivos de Interação entre Proteínas , Receptores de IgG/imunologia , Transdução de Sinais/imunologia , Tirosina/metabolismo
17.
Aging (Albany NY) ; 15(9): 3621-3634, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155145

RESUMO

CPT-11 (Irinotecan) remains an important chemotherapeutic agent against various solid tumors nowadays. Potential adverse effects, especially gastrointestinal toxicities, are the main limiting factor for its clinical utility. Ling Zhi-8 (LZ-8), a fungal immunomodulatory protein in Ganoderma lucidum mycelia, has potential for drug development due to its multiple bioactivities and functions. This study aimed to explore the influence of LZ-8 on CPT-11-treated IEC-6 cells in vitro and on mice with CPT-11-induced intestinal injury in vivo. The mechanism through which LZ-8 exerted its protective effects was also investigated. In the in vitro study, the viability and claudin-1 expression of IEC-6 cells decreased gradually with increasing concentrations of CPT-11, but LZ-8 treatment had no obvious influence on their viability, morphology, and claudin-1 expression. Pretreatment of LZ-8 significantly improved CPT-11-decreased cell viability and claudin-1 expression in IEC-6 cells. In mice with CPT-11-induced intestinal injury, LZ-8 treatment could ameliorate symptoms and mitigate intestinal damage. Meanwhile, LZ-8 restored claudin-1 expression in the intestinal membranes in CPT-11-treated mice. Collectively, our results demonstrated the protective effects of LZ-8 against CPT-11 damage in both IEC-6 cells and mice. LZ-8 can restore claudin-1 expression in intestinal cells following CPT-11 treatment, suggesting the role of claudin-1 in the scenario.


Assuntos
Reishi , Camundongos , Animais , Irinotecano , Claudina-1/genética
18.
J Immunol ; 184(12): 6815-21, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483746

RESUMO

Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity. Thus, DCs have been regarded as a major target of immunosuppressants for the control of harmful immune responses. In this study, we examined the effect of quercetin, a natural flavonoid found in many vegetables and fruits, on the activation and function of mouse DCs. Quercetin effectively inhibited LPS-induced DC activation by reducing the production of proinflammatory cytokines/chemokines and the expression levels of MHC class II and costimulatory molecules. In addition, quercetin uniquely blocked endocytosis by DCs and the LPS-induced DC migration was diminished by quercetin treatment. Furthermore, quercetin abrogated the ability of LPS-stimulated DCs to induce Ag-specific T cell activation, both in vitro and in vivo. Remarkably, coadministration of quercetin with 2,4-dinitro-1-fluorobenzene prevented 2,4-dinitro-1-fluorobenzene-induced contact hypersensitivity, indicating the potential of quercetin for treating delayed-type hypersensitive diseases. Blockage of LPS-induced ERK, JNK, Akt, and NF-kappaB activation contributed to the inhibitory effect of quercetin on DCs. These results strongly suggest that quercetin may be a potent immunosuppressive agent and could be used in the prevention and therapy of chronic inflammation, autoimmunity, and transplantation via the abolishment of DC activation and function.


Assuntos
Células Dendríticas/efeitos dos fármacos , Imunossupressores/farmacologia , Quercetina/farmacologia , Animais , Western Blotting , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/imunologia , Células Dendríticas/imunologia , Endocitose/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
19.
BMC Complement Altern Med ; 12: 119, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883599

RESUMO

BACKGROUND: The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. RESULTS: PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3), laminarin, or piceatannol (a spleen tyrosine kinase inhibitor), suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4). PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. CONCLUSIONS: Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.


Assuntos
Ganoderma/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Linhagem Celular , Citocinas/imunologia , Feminino , Ganoderma/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Receptores de Reconhecimento de Padrão/genética , Regulação para Cima/efeitos dos fármacos
20.
Infect Immun ; 79(11): 4493-502, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21911464

RESUMO

We have previously revealed the protective role of CD8(+) T cells in host defense against Histoplasma capsulatum in animals with CD4(+) T cell deficiency and demonstrated that sensitized CD8(+) T cells are restimulated in vitro by dendritic cells that have ingested apoptotic macrophage-associated Histoplasma antigen. Here we show that immunization with apoptotic phagocytes containing heat-killed Histoplasma efficiently activated functional CD8(+) T cells whose contribution was equal to that of CD4(+) T cells in protection against Histoplasma challenge. Inhibition of macrophage apoptosis due to inducible nitric oxide synthase (iNOS) deficiency or by caspase inhibitor treatment dampened the CD8(+) T cell but not the CD4(+) T cell response to pulmonary Histoplasma infection. In mice subcutaneously immunized with viable Histoplasma yeasts whose CD8(+) T cells are protective against Histoplasma challenge, there was heavy granulocyte and macrophage infiltration and the infiltrating cells became apoptotic. In mice subcutaneously immunized with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled apoptotic macrophages containing heat-killed Histoplasma, the CFSE-labeled macrophage material was found to localize within dendritic cells in the draining lymph node. Moreover, depleting dendritic cells in immunized CD11c-DTR mice significantly reduced CD8(+) T cell activation. Taken together, our results revealed that phagocyte apoptosis in the Histoplasma-infected host is associated with CD8(+) T cell activation and that immunization with apoptotic phagocytes containing heat-killed Histoplasma efficiently evokes a protective CD8(+) T cell response. These results suggest that employing apoptotic phagocytes as antigen donor cells is a viable approach for the development of efficacious vaccines to elicit strong CD8(+) T cell as well as CD4(+) T cell responses to Histoplasma infection.


Assuntos
Apoptose/fisiologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Fúngicas/imunologia , Histoplasma/imunologia , Histoplasmose/imunologia , Animais , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica/fisiologia , Histoplasmose/prevenção & controle , Imunização , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA