Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cureus ; 13(10): e19058, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34853764

RESUMO

Brugada electrocardiogram (ECG) pattern describes a characteristic right bundle branch block (RBBB) appearance with persistent ST-segment elevation in precordial leads V1 to V3, often associated with Brugada syndrome, a genetic sodium channelopathy, in the absence of ischemic or structural heart disease. Known triggers such as fever, electrolyte abnormalities, medications, or recreational drugs may elicit such an ECG pattern without a clear clinical significance yet creating a dilemma for clinicians providing care in the urgent setting. We present a case of reversible Brugada electrocardiogram pattern (BEP) after recreational use of delta-8-tetrahydrocannabinol (THC) and explore the need for further research on the safety of such an over-the-counter supplement.

2.
Int J Cardiovasc Imaging ; 37(12): 3583-3588, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34357521

RESUMO

To compare overall number of downstream tests and total costs between negative exercise stress echocardiograms (ESE) or cardiac computed tomography angiography scans (CCTA) in symptomatic Tricare beneficiaries suspected of having coronary artery disease (CAD). This is a retrospective cohort study examining 651 propensity-matched patients who underwent ESE or CCTA with normal results between 2008 and 2014 at the United States' largest Department of Defense hospital. The total number of additional downstream tests over the next five years was determined. The total costs associated with each arm, inclusive of the initial test and all subsequent tests, were calculated using the 2018 Medicare Physician Fee Schedule. 18.5 percent of patients with a normal ESE result underwent some additional form of cardiac testing over the five years after initial testing compared to 12.8 percent of patients with a normal CCTA. The absolute difference in total number of downstream tests between both study groups was 5.7 percent (p = 0.03). When factoring the costs of the initial test as well as the downstream tests, the ESE group was associated with overall lower costs compared to the CCTA group, 351 United States Dollars (USD) versus 496 USD (p < 0.0001). This study demonstrates that, when compared to CCTA, ESE is associated with a higher total number of downstream tests, but overall lower total costs when chosen as initial testing strategy for suspected CAD.


Assuntos
Doença da Artéria Coronariana , Idoso , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Medicare , Valor Preditivo dos Testes , Estudos Retrospectivos , Estados Unidos
3.
Cell Rep ; 14(9): 2059-2067, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923601

RESUMO

Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is possibly a selective effector of rsks-1/S6K-mediated longevity and that overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels.


Assuntos
Arginina Quinase/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Creatina Quinase/fisiologia , Longevidade , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Ativação Enzimática , Feminino , Masculino , Camundongos Knockout , Neuroglia/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo
4.
Aging Cell ; 13(3): 419-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24314125

RESUMO

Integrin-signaling complexes play important roles in cytoskeletal organization and cell adhesion in many species. Components of the integrin-signaling complex have been linked to aging in both Caenorhabditis elegans and Drosophila melanogaster, but the mechanism underlying this function is unknown. Here, we investigated the role of integrin-linked kinase (ILK), a key component of the integrin-signaling complex, in lifespan determination. We report that genetic reduction of ILK in both C. elegans and Drosophila increased resistance to heat stress, and led to lifespan extension in C. elegans without majorly affecting cytoskeletal integrity. In C. elegans, longevity and thermotolerance induced by ILK depletion was mediated by heat-shock factor-1 (HSF-1), a major transcriptional regulator of the heat-shock response (HSR). Reduction in ILK levels increased hsf-1 transcription and activation, and led to enhanced expression of a subset of genes with roles in the HSR. Moreover, induction of HSR-related genes, longevity and thermotolerance caused by ILK reduction required the thermosensory neurons AFD and interneurons AIY, which are known to play a critical role in the canonical HSR. Notably, ILK was expressed in neighboring neurons, but not in AFD or AIY, implying that ILK reduction initiates cell nonautonomous signaling through thermosensory neurons to elicit a noncanonical HSR. Our results thus identify HSF-1 as a novel effector of the organismal response to reduced ILK levels and show that ILK inhibition regulates HSF-1 in a cell nonautonomous fashion to enhance stress resistance and lifespan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Resposta ao Choque Térmico/fisiologia , Longevidade/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Resposta ao Choque Térmico/genética , Longevidade/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/genética
5.
Nat Commun ; 4: 2267, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23925298

RESUMO

Autophagy is a cellular recycling process that has an important anti-aging role, but the underlying molecular mechanism is not well understood. The mammalian transcription factor EB (TFEB) was recently shown to regulate multiple genes in the autophagy process. Here we show that the predicted TFEB orthologue HLH-30 regulates autophagy in Caenorhabditis elegans and, in addition, has a key role in lifespan determination. We demonstrate that hlh-30 is essential for the extended lifespan of Caenorhabditis elegans in six mechanistically distinct longevity models, and overexpression of HLH-30 extends lifespan. Nuclear localization of HLH-30 is increased in all six Caenorhabditis elegans models and, notably, nuclear TFEB levels are augmented in the livers of mice subjected to dietary restriction, a known longevity-extending regimen. Collectively, our results demonstrate a conserved role for HLH-30 and TFEB in autophagy, and possibly longevity, and identify HLH-30 as a uniquely important transcription factor for lifespan modulation in Caenorhabditis elegans.


Assuntos
Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Longevidade , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Dieta , Feminino , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Mutação/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA