Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Opt Express ; 32(3): 3461-3469, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297566

RESUMO

The laser diode (LD)-pumped Tm:YAP (a-cut, 3.5 at.%) laser generated a maximum ∼2.3 µm continuous wave (CW) laser output power of ∼3 W. The higher output power benefited from the positive effect of the cascade lasing (simultaneously operating on the 3H4 → 3H5 and 3F4 → 3H6 Tm3+ transition). It was the highest CW laser output power amongst the LD/Ti:Sapphire-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far. Under the cascade laser operation, the slope efficiency of the ∼2.3 µm laser emission versus the absorbed pump power increased from 13.0% to 21.4%.

2.
Opt Express ; 32(9): 15472-15482, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859196

RESUMO

As a new member of two-dimensional (2D) phosphorene, 2D layered violet phosphorus (VP) has unique optoelectronic properties and good environmental stability, showing its huge advantages in optoelectronic applications. In this paper, the ultrafast nonlinear optical (NLO) properties of layered VP nanosheets at 1 µm band were explored, which exhibit an obvious saturable absorption response with a modulation depth of ∼1.97%. Meanwhile, the fast and slow carrier lifetimes of VP nanosheets at 1µm band were also determined as 295.9 fs and 2.36 ps, respectively, which are much shorter than that of most reported 2D materials. The excellent saturable absorption response combined with ultrashort carrier lifetimes indicate the prospect of layered VP nanosheets as a fast saturable absorber (SA) for ultrafast laser modulation. Then we demonstrated a Yb-doped fiber laser based on the VP-deposited taper-shaped fiber (TSF) SA, which delivers stable Q-switched mode-locked (QSML) pulses, dual-wavelength mode-locked pulses and 404-fs noise-like pulses. This work fully demonstrates the great potential of 2D VP materials for 1 µm ultrashort laser pulse generation.

3.
Opt Express ; 32(10): 18055-18067, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858971

RESUMO

The polarized spectral properties and ∼2.3 µm high-power continuous-wave laser operation of Tm3+-doped yttrium orthovanadate crystal (Tm:YVO4) are reported. For the 3H4 → 3H5 transition, the stimulated-emission cross-section σSE is 1.01 × 10-20 cm2 at 2276 nm corresponding to a large emission bandwidth of 52 nm (for π-polarization). Pumped by a 794 nm laser diode, the 1.5 at.% Tm:YVO4 laser delivered 5.52 W at 2.29 µm with a slope efficiency of 19.9%, a laser threshold of 8.70 W, and a linear laser polarization (π). The Tm laser operated on the cascade scheme (on the 3H4 → 3H5 and 3F4 → 3H6 transitions) which was mainly responsible for the observed high laser slope efficiency. We also report on the first passively Q-switched Tm:YVO4 laser at 2.3 µm by employing porous nano-grained cuprous selenide (PNG-Cu2Se) as a saturable absorber. The shortest pulse duration and the highest single pulse energy amounted to 706 ns and 3.65 µJ, respectively, corresponding to a pulse repetition rate of 62.8 kHz.

4.
Opt Express ; 32(11): 19611-19625, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859092

RESUMO

We report on the Czochralski crystal growth, polarized optical spectroscopy, and the first continuous-wave laser operation of 1.5 at.% Tm:LuVO4 crystal on the 3H4 → 3H5 transition. The polarized absorption and stimulated-emission properties of Tm3+ ions in LuVO4 were revised and the crystal-field splitting of the Tm3+ multiplets was determined by low-temperature (12 K) spectroscopy. The maximum stimulated-emission cross-section for the 3H4 → 3H5 transition is 2.48 × 10-20 cm2 at 2363 nm for π-polarization corresponding to an emission bandwidth of 28 nm. Evidence of phonon-assisted emissions of Tm3+ ions above 2 µm is presented. The broadband emission properties of the Tm:LuVO4 crystal make it promising for ultrashort pulse generation. Additionally, pumped by a 796 nm fiber-coupled laser diode, the Tm:LuVO4 laser generated a Watt-level output power at 2279-2295 nm with a slope efficiency of 9.2% and linearly polarized emission (π-polarization).

5.
Opt Express ; 31(4): 6704-6712, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823920

RESUMO

In this contribution, we measured the third-order nonlinear optical response of bismuth oxychloride (BiOCl) nanosheets with the open-aperture (OA) and the closed-aperture (CA) Z-scan techniques with a variable excitation intensity at 1.34 µm. The effective nonlinear absorption coefficient ßeff and the nonlinear refractive index n2 of the prepared BiOCl nanosheets with abundant oxygen vacancies were obtained under the excitation intensity. The third-order nonlinear optical susceptibility |χ(3)| was 1.64 × 10-9 esu. The nonlinear optical features of BiOCl enabled it as a superb saturable absorber for pulse laser generation. As a consequence, we demonstrated the first passively Q-switched Nd:GdVO4 laser with the BiOCl saturable absorber, producing a shortest pulse duration of 543 ns and a highest repetition rate of 227 kHz, leading to a maximum pulse energy of 74 nJ. Our findings show that BiOCl nanosheets with oxygen vacancies have large nonlinear optical sensitivities and can be exploited to generate optical pulses.

6.
Opt Express ; 31(16): 26368-26377, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710499

RESUMO

The laser diode (LD)-pumped efficient high-power cascade Tm:GdVO4 laser simultaneously operating on the 3F4 → 3H6 (at ∼2 µm) and 3H4 → 3H5 (at ∼2.3 µm) Tm3+ transition was first reported in this paper. The cascade Tm:GdVO4 laser generated a maximum total continuous-wave (CW) laser output power of 8.42 W with a slope efficiency of 40%, out of which the maximum ∼2.3 µm CW laser output power was 2.88 W with a slope efficiency of 14%. To our knowledge, 2.88 W is the highest CW laser output power amongst the LD-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far.

7.
Opt Express ; 31(12): 19666-19674, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381377

RESUMO

The exceptional mechanical, electronic, topological, and optical properties, make bismuthene an ideal candidate for various applications in ultrafast saturation absorption and spintronics. Despite the extensive research efforts devoted to synthesizing this material, the introduction of defects, which can significantly affect its properties, remains a substantial obstacle. In this study, we investigate the transition dipole moment and joint density of states of bismuthene with/without single vacancy defect via energy band theory and interband transition theory. It is demonstrated that the existence of the single defect enhances the dipole transition and joint density of states at lower photon energies, ultimately resulting in an additional absorption peak in the absorption spectrum. Our results suggest that the manipulation of defects in bismuthene has enormous potential for improving the optoelectronic properties of this material.

8.
Opt Express ; 31(9): 13576-13584, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157242

RESUMO

We report on the cascade continuous-wave operation of a diode-pumped Tm:YVO4 laser on the 3F4 → 3H6 (at ∼2 µm) and 3H4 → 3H5 (at ∼2.3 µm) Tm3+ transitions. Pumped with a fiber-coupled spatially multimode 794 nm AlGaAs laser diode, the 1.5 at.% Tm:YVO4 laser yielded a maximum total output power of 6.09 W with a slope efficiency of 35.7% out of which the 3H4 → 3H5 laser emission corresponded to 1.15 W at 2291-2295 and 2362-2371 nm with a slope efficiency of 7.9% and a laser threshold of 6.25 W.

9.
Opt Express ; 31(12): 18751-18764, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381308

RESUMO

We report on the first laser operation of a disordered Tm:CaGdAlO4 crystal on the 3H4 → 3H5 transition. Under direct pumping at 0.79 µm, it generates 264 mW at 2.32 µm with a slope efficiency of 13.9% and 22.5% vs. incident and absorbed pump power, respectively, and a linear polarization (σ). Two strategies to overcome the bottleneck effect of the metastable 3F4 Tm3+ state leading to the ground-state bleaching are exploited: cascade lasing on the 3H4 → 3H5 and 3F4 → 3H6 transitions and dual-wavelength pumping at 0.79 and 1.05 µm combining the direct and upconversion pumping schemes. The cascade Tm-laser generates a maximum output power of 585 mW at 1.77 µm (3F4 → 3H6) and 2.32 µm (3H4 → 3H5) with a higher slope efficiency of 28.3% and a lower laser threshold of 1.43 W, out of which 332 mW are achieved at 2.32 µm. Under dual-wavelength pumping, further power scaling to 357 mW at at 2.32 µm is observed at the expense of increased laser threshold. To support the upconversion pumping experiment, excited-state absorption spectra of Tm3+ ions for the 3F4 → 3F2,3 and 3F4 → 3H4 transitions are measured for polarized light. Tm3+ ions in CaGdAlO4 exhibit broadband emission at 2.3 - 2.5 µm making this crystal promising for ultrashort pulse generation.

10.
Opt Lett ; 48(24): 6404-6407, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099759

RESUMO

A compact Tm:GdVO4 laser pumped by a 794 nm laser diode generated 6.09 W at 2.29 µm (3H4 → 3H5 Tm3+ transition) with a high slope efficiency of 30.8% and linear laser polarization (π). The polarized spectroscopic properties of Tm3+ in GdVO4 were also revised. The peak stimulated-emission cross section of Tm3+ is 2.97 × 10-20 cm2 at 2280 nm, corresponding to an emission bandwidth of 42 nm for π-polarized light.

11.
Anal Chem ; 94(16): 6102-6111, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35333527

RESUMO

Because of the wide abundance range of the proteome, achieving high-coverage quantification of low-abundance proteins is always a major challenge. In this study, a complete pipeline focused on all-ion monitoring (AIM) is first constructed with the concept of untargeted parallel-reaction monitoring, including the seamless connection of protein sample preparation, liquid chromatography mass spectrometry (LC-MS) acquisition, and algorithm development to enable the in-depth quantitative analysis of low-abundance proteins. This pipeline significantly improves the reproducibility and sensitivity of sample preparation and LC-MS acquisition for low-abundance proteins, enabling all the precursors ions fragmented and collected. Contributed by the advantages of the AIM method with all the target precursor acquisition by the data-dependent acquisition (DDA) approach, together with the ability of data-independent acquisition to fragment all precursor ions, the quantitative accuracy and precision of low-abundance proteins are greatly enhanced. As a proof of concept, this pipeline is employed to discover the key differential proteins in the mechanism of hepatocellular carcinoma (HCC) metastasis. On the basis of the superiority of AIM, an extremely low-abundance protein, CALB2, is proposed to promote HCC metastasis in vitro and in vivo. We also reveal that CALB2 activates the TRPV2-Ca2+-ERK1/2 signaling pathway to induce HCC cell metastasis. In summary, we provide a universal AIM pipeline for the high-coverage quantification of low-abundance functional proteins to seek novel insights into the mechanisms of cancer metastasis.


Assuntos
Calbindina 2 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Calbindina 2/genética , Carcinoma Hepatocelular/patologia , Cromatografia Líquida , Humanos , Íons/química , Neoplasias Hepáticas/patologia , Reprodutibilidade dos Testes
12.
Anal Chem ; 94(2): 758-767, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34932315

RESUMO

Limited by the rare efficient extraction system in extracting hydrophobic membrane protein complexes (MPCs) without compromising the stability of protein-protein interactions (PPIs), the in-depth functional study of MPCs has lagged far behind. In this study, the first systematic screening of ionic liquids (ILs) was performed and showed that triethylammonium acetate (TEAA) IL exhibited excellent performance in stabilizing PPIs, which was further confirmed by molecular docking simulations. By combining TEAA with the conventional detergent Nonidet P-40 (NP-40), a novel IL-based extraction system, i-TAN (TEAA IL with 1% NP-40), was proposed, which demonstrated superior performance in extracting and stabilizing MPCs, attributed to its larger size, more uniform distribution, and closer-to-neutral microenvironment of micelles. Extraction of MPCs with i-TAN allowed the confident identification of more hydrophobic EGFR-interacting proteins that are easily dissociated during the extraction process. Quantitative analysis of the difference in EGFR complexes between trastuzumab-sensitive and trastuzumab-resistant breast cancer cells provided comprehensive insights to understand the drug resistance mechanism, suggesting that i-TAN has great potential in interactomics and functional analysis of MPCs. This study provides a novel strategy for MPC extraction and downstream processing.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas de Membrana , Simulação de Acoplamento Molecular
13.
Opt Lett ; 47(13): 3271-3274, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776603

RESUMO

In this Letter, the fabrication of large-scale (50.8 mm in diameter) few-layered MoS2 with physical vapor deposition on sapphire is described. Open-aperture Z-scan technology with a home-made excitation source at 2275 nm was applied to explore its nonlinear saturable absorption properties. The as-grown few-layered MoS2 membrane possessed a modulation depth of 17% and a saturable intensity of 1.185 MW cm-2. As a consequence, the deposited MoS2 membrane was exploited as a saturable absorber to realize a passively Q-switched Tm:YAP laser for the first time, to the best of our knowledge. Pulses as short as 316 ns were generated with a repetition rate of 228 kHz, corresponding to a peak power of 5.53 W. Results confirmed that the two-dimensional layered MoS2 could be beneficial for mid-infrared photonic applications.

14.
Opt Lett ; 47(23): 6265-6268, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219223

RESUMO

Compact diode-pumped continuous wave (CW) and passively Q switched Tm:YAG lasers operating on the 3H4 → 3H5 transition are demonstrated. Using a 3.5-at.% Tm:YAG crystal, a maximum CW output power of 1.49 W is achieved at 2330 nm with a slope efficiency of 10.1%. The first Q switched operation of the mid-infrared Tm:YAG laser around 2.3 µm is realized with a few-atomic-layer MoS2 saturable absorber. Pulses as short as 150 ns are generated at a repetition rate of 190 kHz, corresponding to a pulse energy of 1.07 µJ. Tm:YAG is an attractive material for diode-pumped CW and pulsed mid-infrared lasers emitting around 2.3 µm.

15.
Opt Lett ; 47(21): 5501-5504, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219254

RESUMO

In this Letter, a watt-level laser diode (LD)-pumped ∼2.3-µm (on the 3H4→3H5 quasi-four-level transition) laser is reported based on a 1.5 at.% a-cut Tm:YVO4 crystal. The maximum continuous wave (CW) output power obtained is 1.89 W and 1.11 W with the maximum slope efficiency of 13.6% and 7.3% (versus the absorbed pump power) for the 1% and 0.5% transmittance of the output coupler, respectively. To the best of our knowledge, the CW output power of 1.89 W we obtained is the highest CW output power amongst the LD-pumped ∼2.3-µm Tm3+-doped lasers.

16.
Carcinogenesis ; 42(5): 753-761, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33677528

RESUMO

Sorafenib is commonly used to treat advanced human hepatocellular carcinoma (HCC). However, clinical efficacy has been limited by drug resistance. In this study, we used label-free quantitative proteomic analysis to systematically investigate the underlying mechanisms of sorafenib resistance in HCC cells. A total of 1709 proteins were confidently quantified. Among them, 89 were differentially expressed and highly enriched in the processes of cell-cell adhesion, negative regulation of apoptosis, response to drug and metabolic processes involving in sorafenib resistance. Notably, folate receptor α (FOLR1) was found to be significantly upregulated in resistant HCC cells. In addition, in vitro studies showed that overexpression of FOLR1 decreased the sensitivity of HCC cells to sorafenib, whereas siRNA-directed knockdown of FOLR1 increased the sensitivity of HCC cells to sorafenib. Immunoprecipitation-mass spectrometry analysis suggested a strong link between FOLR1 and autophagy-related proteins. Further biological experiments found that FOLR1-related sorafenib resistance was accompanied by the activation of autophagy, whereas inhibition of autophagy significantly reduced FOLR1-induced cell resistance. These results suggest the driving role of FOLR1 in HCC resistance to sorafenib, which may be exerted through FOLR1-induced autophagy. Therefore, this study may provide new insights into understanding the mechanism of sorafenib resistance.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Receptor 1 de Folato/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteômica , Apoptose/efeitos dos fármacos , Autofagia/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/efeitos adversos , Sorafenibe/farmacologia
17.
Opt Express ; 29(16): 24684-24694, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614819

RESUMO

In this paper, two-dimensional material Sb2Te3 nanosheets are fabricated and the optical nonlinear response is investigated. A laser diode (LD) end-pumped doubly Q-switched Tm:YAP laser with electro-optic modulator (EOM) and Sb2Te3 nanosheets based saturable absorber (SA) is presented. The shortest pulse duration of 38 ns is achieved at the pulse repetition frequency of 100 Hz, corresponding to the highest peak power of 111.8 kW. The double Q-switching technique shows the advantages of pulse duration compression and peak power improvement. The coupled rate equations for the doubly Q-switched laser are developed and the corresponding numerical simulation agrees with the experimental results. We believe that the Sb2Te3 is a potential nanomaterial for the application in optoelectronic field.

18.
Opt Lett ; 46(9): 2043-2046, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929414

RESUMO

We report on the first, to the best of our knowledge, passive Q-switching operation at 2.3 µm passively based on Tm:YAIO3 (Tm:YAP) 3H4→3H5 transition with sulfur-doped graphitic carbon nitride (g-gC3N4) as the saturable absorber. Sulfur-doping engineering in g-C3N4 was manifested to enhance its mid-infrared nonlinear saturable absorption characteristics, which was confirmed by the conventional open-aperture Z-scan experiment with the excitation at 2.3 µm. The large effective nonlinear absorption coefficient of S-gC3N4 was determined to be -0.68cm/GW, indicating the remarkable MIR optical response. Initiated by S-gC3N4, a passively Q-switched laser operating at 2274.6 nm was configured with a-cut 3.0 at.% Tm:YAP as the gain medium. Stable Q-switching pulses were generated with the shortest pulse width of 140 ns, corresponding to the maximum peak power of 21.8 W. The experimental results reveal the effectiveness of sulfur doping to improve the performance of g-C3N4 in the MIR pulse generation.

19.
Nanotechnology ; 32(37)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34107461

RESUMO

In this paper, the Nb2CTxMXene nanosheets were fabricated and the corresponding microstructures were investigated. The nonlinear optical response was illustrated by open aperture Z-scan and I-scan methods. The ground and the excited state absorption cross-sections of 2D Nb2CTxMXene were also investigated. As the saturable absorber (SA), the Nb2CTxMXene was applied in the passively Q-switched Tm:YAP laser. 1.96µs Q-switched pulses with 3.97 W peak power were achieved at the repetition frequency of 80 kHz. Further theoretical model was built by using the coupled rate equations in simulating the dynamic process of the passively Q-switched Tm:YAP laser. The numerical simulation results are fundamentally in agreement with the experimental results, which proves the Nb2CTxMXene can be a good potential nanomaterial for further optoelectronic applications.

20.
Sens Actuators B Chem ; 348: 130708, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34511726

RESUMO

Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA