RESUMO
Leucettamine B is a natural product found in marine sponge Leucetta microraphis. Several of analogs of its family, such as aplysinopsine and clathridine, are medicinally active molecules which have applications in many pharmaceuticals and healthcare products; however, thus far, leucettamine B has not been studied. In this report, we describe the synthesis of a new class of analogs of leucettamine B obtained by Knoevenagel condensation using a microwave reactor. The 25 newly synthesized compounds were tested against MDA-MB-468, SW480, and Mahlavu cell lines for anticancer activity. Among them, the carborane-based compound (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(1-closo-carboranyl)-2-thioxo -thiazolidin-4-one (49) and (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(2-(pyrrolidin-1-yl)ethyl)-2-thioxothiazolidin-4-one (31) derivatives were found to have the most potential for use against tumor cells. The carborane derivative 49 had the lowest IC50 value against the SW480 cell line (4.7 µM) and the Mahlavu (6.6 µM) cell line. Furthermore, compound 31 also had a low IC50 value against SW480 (7.5 µM). Our research shows that leucettamine B analogs might have potential for use in cancer chemotherapy.
Assuntos
Antineoplásicos/farmacologia , Boranos/farmacologia , Desenho de Fármacos , Imidazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Boranos/síntese química , Boranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Células VeroRESUMO
The glucose metabolism rate in cancer cells is a crucial piece of information for the cancer aggressiveness. A feasible method to monitor processes of oncogenic mutations has been demonstrated in this work. The fluorescent gold nanoclusters conjugated with glucose (glucose-AuNCs) were successfully synthesized as a cancer-targeting probe for glucose transporters (Gluts) overexpressed by U-87 MG cancer cells, which can be observed under confocal microscopy. The structural and optical characterizations of fluorescent glucose-AuNCs were confirmed by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The MTT assay exhibited the high biocompatibility of water-soluble glucose-AuNCs for further biomedical applications. The glucose metabolic cleavage of glucose-AuNCs by glycolytic enzymes from U-87 MG cancer cell was measured by fluorescence change of glucose-AuNCs. The fluorescence change based on the integrated area under fluorescence spectra ( A t) of glucose-AuNCs was plotted as a function of different reaction time ( t) with glycolytic enzymes. The fitted curve of A t versus t showed the first-order kinetics to explain the mechanism of glucose metabolic cleavage rate of glucose-AuNCs by glycolytic enzymes. The rate constant k could be utilized to determine the glucose metabolism rate of glucose-AuNCs for the quantitative analysis of cancer aggressiveness. Our work provides a practical application of target-specific glucose-AuNCs as a fluorescence probe to analyze the glucose metabolism in Gluts overexpressed cancer cells.
Assuntos
Corantes Fluorescentes/química , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Glicólise , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/metabolismo , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/análise , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Neoplasias/enzimologiaRESUMO
DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni(2+)) or high (Ni(3+)) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low and high oxidation states of Ni ions in Ni-DNA represents a programmable multistate memory system with an added capacitive component, in which multistate information can be written, read, and erased. This study also indicates that the biomolecule-based self-organized nanostructure can be used as a template for nanodevice fabrication.
Assuntos
DNA/química , Eletrodos , Nanopartículas Metálicas/química , Nanofios/química , Níquel/química , DNA/ultraestrutura , Condutividade Elétrica , Impedância Elétrica , Íons , Nanopartículas Metálicas/ultraestrutura , Nanofios/ultraestrutura , Oxirredução , Oxigênio/químicaRESUMO
Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 µl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.
Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Enterovirus Humano A/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/metabolismo , Enterovirus Humano A/imunologia , Humanos , Nanomedicina/instrumentação , Nanomedicina/métodos , Sensibilidade e EspecificidadeRESUMO
The mechanism underlying DNA charge transport is intriguing. However, poor conductivity of DNA makes it difficult to detect DNA charge transport. Metallic DNA (M-DNA) has better conducting properties than native DNA. Ni(2+) may chelate in DNA and thus enhance DNA conductivity. On the basis of this finding, it is possible to reveal the mechanisms underlying DNA charge transport. The conductivity of various Ni-DNA species such as single-stranded, full complement, or mismatched sequence molecules was systematically tested with ultraviolet absorption and electrical or chemical methods. The results showed that the conductivity of single-stranded Ni-DNA (Ni-ssDNA) was similar to that of a native DNA duplex. Moreover, the resistance of Ni-DNA with a single basepair mismatch was significantly higher than that of fully complementary Ni-DNA duplexes. The resistance also increased exponentially as the number of mismatched basepairs increased linearly after the tunneling current behavior predicted by the Simmons model. In conclusion, the charges in Ni(2+)-doped DNA are transported through the Ni(2+)-mediated π-π stacking corridor. Furthermore, Ni-DNA acts as a conducting wire and exhibits a tunneling barrier when basepair mismatches occur. This property may be useful in detecting single basepair mismatches.
Assuntos
DNA/química , Níquel/química , Eletricidade Estática , Pareamento Incorreto de Bases , Pareamento de Bases , Sequência de Bases , DNA/genética , Espectroscopia Dielétrica , Condutividade Elétrica , Técnicas Eletroquímicas , Eletrodos , Elétrons , Ouro/química , Dados de Sequência Molecular , Espectrofotometria UltravioletaRESUMO
Haptoglobin (Hp) is an acute phase protein that binds free hemoglobin (Hb), preventing Hb-induced oxidative damage in the vascular system. There are three phenotypes in human Hp, whose heterogeneous polymorphic structures and varying concentrations in plasma have been attributed to the cause of diseases and outcome of clinical treatments. Different phenotypes of Hp may be composed of the same subunits but different copy numbers, rendering their determination difficult by a single procedure. In this study, we have developed a simple, fast, reliable and sensitive method, using label-free nanogold-modified bioprobes coupled with self-development electrochemical impedance spectroscopy (EIS). By this method, probe surface charge transfer resistance is detected. The relative charge transfer resistance ratios for Hp 1-1, Hp 2-1 and Hp 2-2 were characterized. We were able to determine protein size difference within 3 nm, and the linear region of the calibration curve for Hp levels in the range of 90 pg ml(-1) and 90 µg ml(-1) (â¼1 fM to 1 pM). We surmise that similar approaches can be used to investigate protein polymorphism and altered protein-protein interaction associated with diseases.
Assuntos
Espectroscopia Dielétrica/métodos , Ouro/química , Haptoglobinas/análise , Nanopartículas Metálicas/química , Anticorpos/metabolismo , Especificidade de Anticorpos/imunologia , Antígenos/metabolismo , Eletrodos , Ensaio de Imunoadsorção Enzimática , Humanos , Fenótipo , Ligação Proteica , Estabilidade Proteica , Reprodutibilidade dos Testes , Fatores de TempoRESUMO
Designing a facile and rapid detection method for haptoglobin (Hp) phenotypes in human blood plasma is urgently needed to meet clinic requirements in hemolysis theranostics. In this work, a novel approach to qualitatively analyze Hp phenotypes was developed using a fluorescent probe of gold nanoclusters (AuNCs). Hemoglobin-conjugated (Hb)-AuNCs were successfully synthesized with blue-green fluorescence and high biocompatibility via one-pot synthesis. The fluorescence of Hb-AuNCs comes from the ligand-metal charge transfer between surface ligands of Hb and the gold cores with high oxidation states. The biocompatibility assays including cell viability and fluorescence imaging, demonstrated high biocompatibility of Hb-AuNCs. For the qualitative analysis, three Hp phenotypes in plasma, Hp 1-1, Hp 2-1, and Hp 2-2, were successfully discriminated according to changes in the fluorescence intensity and peak position of the maximum intensity of Hb-AuNCs. Our work provides a practical method with facile and rapid properties for the qualitative analysis of three Hp phenotypes in human blood plasma.
RESUMO
P-selectin overexpressed on activated endothelial cells and platelets is a new target for treatment of cancers and cardiovascular diseases such as atherosclerosis and thrombosis. In this study, depolymerized low molecular weight fucoidan (LMWF8775) and a thermolysin-hydrolyzed protamine peptide (TPP1880) were prepared. TPP1880 and LMWF8775 were able to form self-assembled complex nanoparticles (CNPs). The formation of TPP1880/LMWF8775 CNPs was characterized by Fourier-transform infrared spectra, circular dichroism spectra and isothermal titration calorimetry. The CNPs selectively targeted PMA-stimulated, inflamed endothelial cells (HUVECs) with high expression of P-selectin. Gd-DTPA MRI contrast agent was successfully loaded in the CNPs with better T1 relaxivity and selectively accumulated in the activated HUVECs with increased MRI intensity and reduced cytotoxicity as compared to free Gd-DTPA. Our results suggest that the TPP1880/LMWF8775 CNPs may have potential in future for early diagnosis of cardiovascular diseases and cancers in which the endothelium is inflamed or activated.
Assuntos
Gadolínio DTPA , Nanopartículas , Meios de Contraste , Células Endoteliais , Endotélio , Imageamento por Ressonância Magnética , Peptídeos , PolissacarídeosRESUMO
Upper eyelid movement depends on the antagonistic actions of orbicularis oculi muscle and levator aponeurosis. Blepharoptosis is an abnormal drooping of upper eyelid margin with the eye in primary position of gaze. Transconjunctival incisions for upper eyelid ptosis correction have been a well-developed technique. Conventional prognosis however depends on clinical observations and lacks of quantitatively analysis for the eyelid muscle controlling. This study examines the possibility of using the assessments of temporal correlation in surface electromyography (SEMG) as a quantitative description for the change of muscle controlling after operation. Eyelid SEMG was measured from patients with blepharoptosis preoperatively and postoperatively, as well as, for comparative study, from young and aged normal subjects. The data were analyzed using the detrended fluctuation analysis method. The results show that the temporal correlation of the SEMG signals can be characterized by two indices associated with the correlation properties in short and long time scales demarcated at 3ms, corresponding to the time scale of neural response. Aging causes degradation of the correlation properties at both time scales, and patient group likely possess more serious correlation degradation in long-time regime which was improved moderately by the ptosis corrections. We propose that the temporal correlation in SEMG signals may be regarded as an indicator for evaluating the performance of eyelid muscle controlling in postoperative recovery.
Assuntos
Blefaroptose/diagnóstico , Blefaroptose/cirurgia , Túnica Conjuntiva/cirurgia , Eletromiografia/métodos , Cuidados Pós-Operatórios/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Blefaroplastia/métodos , Blefaroptose/fisiopatologia , Túnica Conjuntiva/fisiologia , Pálpebras/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculos Oculomotores/fisiologia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
An efficient method for modifying the surface of detonation nanodiamonds (5 and 100 nm) with thiol groups (-SH) by using an organic chemistry strategy is presented herein. Thiolated nanodiamonds were characterized by spectroscopic techniques, and the atomic percentage of sulfur was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The conjugation between thiolated nanodiamonds and gold nanoparticles was elucidated by transmission electron microscopy and UV-vis spectrometry. Moreover, the material did not show significant cytotoxicity to the human lung carcinoma cell line and may prospectively be applied in bioconjugated technology. The new method that we elucidated may significantly improve the approach to surface modification of detonation nanodiamonds and build up a new platform for the application of nanodiamonds.
Assuntos
Nanodiamantes/química , Compostos de Sulfidrila/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Nanodiamantes/toxicidade , Tamanho da Partícula , Espectroscopia FotoeletrônicaRESUMO
It is highly desirable to develop a therapeutic, observable nanoparticle complex for specific targeting in cancer therapy. Growth hormone (GH) and its antagonists have been explored as cancer cell-targeting molecules for both imaging and therapeutic applications. In this study, a low toxicity, biocompatible, therapeutic, and observable GH-nanoparticle complex for specifically targeting growth hormone receptor (GHR) in cancer cells was synthesized by conjugating GH with green fluorescence protein and carboxylated nanodiamond. Moreover, we have shown that this complex can be triggered by laser irradiation to create a "nanoblast" and induce cell death in the A549 non-small-cell lung cancer cell line via the apoptotic pathway. This laser-mediated, cancer-targeting platform can be widely used in cancer therapy.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Hormônio do Crescimento/química , Nanodiamantes/química , Neoplasias/tratamento farmacológico , Receptores da Somatotropina/antagonistas & inibidores , Antineoplásicos/síntese química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Fluorescência Verde/química , Humanos , Lasers , Estrutura Molecular , Neoplasias/patologia , Tamanho da Partícula , Relação Estrutura-Atividade , Succinimidas/química , Propriedades de SuperfícieRESUMO
To develop a drug delivery system (DDS), it is critical to address challenging tasks such as the delivery of hydrophobic and amphiphilic compounds, cell uptake, and the metabolic fate of the drug delivery carrier. Low-density lipoprotein (LDL) has been acknowledged as the human serum transporter of natively abundant lipoparticles such as cholesterol, triacylglycerides, and lipids. Apolipoprotein B (apo B) is the only protein contained in LDL, and possesses a binding moiety for the LDL receptor that can be internalized and degraded naturally by the cell. Therefore, synthetic/reconstituting apoB lipoparticle (rABL) could be an excellent delivery carrier for hydrophobic or amphiphilic materials. Here, we synthesized rABL in vitro, using full-length apoB through a five-step solvent exchange method, and addressed its potential as a DDS. Our rABL exhibited good biocompatibility when evaluated with cytotoxicity and cell metabolic response assays, and was stable during storage in phosphate-buffered saline at 4 °C for several months. Furthermore, hydrophobic superparamagnetic iron oxide nanoparticles (SPIONPs) and the anticancer drug M4N (tetra-O-methyl nordihydroguaiaretic acid), used as an imaging enhancer and lipophilic drug model, respectively, were incorporated into the rABL, leading to the formation of SPIONPs- and M4N- containing rABL (SPIO@rABL and M4N@rABL, respectively). Fourier transform infrared spectroscopy suggested that rABL has a similar composition to that of LDL, and successfully incorporated SPIONPs or M4N. SPIO@rABL presented significant hepatic contrast enhancement in T2-weighted magnetic resonance imaging in BALB/c mice, suggesting its potential application as a medical imaging contrast agent. M4N@rABL could reduce the viability of the cancer cell line A549. Interestingly, we developed solution-phase high-resolution transmission electron microscopy to observe both LDL and SPIO@rABL in the liquid state. In summary, our LDL-based DDS, rABL, has significant potential as a novel DDS for hydrophobic and amphiphilic materials, with good cell internalization properties and metabolicity.