Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142838

RESUMO

Viruses infecting fungi are referred to as mycoviruses. Here, we carried out in silico mycovirome studies using public fungal transcriptomes mostly derived from mRNA libraries. We identified 468 virus-associated contigs assigned to 5 orders, 21 families, 26 genera, and 88 species. We assembled 120 viral genomes with diverse RNA and DNA genomes. The phylogenetic tree and genome organization unveiled the possible host origin of mycovirus species and diversity of their genome structures. Most identified mycoviruses originated from fungi; however, some mycoviruses had strong phylogenetic relationships with those from insects and plants. The viral abundance and mutation frequency of mycoviruses were very low; however, the compositions and populations of mycoviruses were very complex. Although coinfection of diverse mycoviruses in the fungi was common in our study, most mycoviromes had a dominant virus species. The compositions and populations of mycoviruses were more complex than we expected. Viromes of Monilinia species revealed that there were strong deviations in the composition of viruses and viral abundance among samples. Viromes of Gigaspora species showed that the chemical strigolactone might promote virus replication and mutations, while symbiosis with endobacteria might suppress virus replication and mutations. This study revealed the diversity and host distribution of mycoviruses.


Assuntos
Micovírus , Vírus de RNA , Micovírus/genética , Genoma Viral , Humanos , Filogenia , RNA , Vírus de RNA/genética , RNA Mensageiro , RNA Viral/genética , Transcriptoma
2.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202675

RESUMO

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.


Assuntos
Alho/microbiologia , Metagenoma , Metagenômica , Microbiota , Bactérias/classificação , Bactérias/genética , Biologia Computacional/métodos , Metagenômica/métodos , Especificidade de Órgãos , Filogenia , Análise de Sequência de RNA
3.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201359

RESUMO

Red pepper (Capsicum annuum, L.), is one of the most important spice plants in Korea. Overwintering pepper fruits are a reservoir of various microbial pepper diseases. Here, we conducted metagenomics (DNA sequencing) and metatranscriptomics (RNA sequencing) using samples collected from three different fields. We compared two different library types and three different analytical methods for the identification of microbiomes in overwintering pepper fruits. Our results demonstrated that DNA sequencing might be useful for the identification of bacteria and DNA viruses such as bacteriophages, while mRNA sequencing might be beneficial for the identification of fungi and RNA viruses. Among three analytical methods, KRAKEN2 with raw data reads (KRAKEN2_R) might be superior for the identification of microbial species to other analytical methods. However, some microbial species with a low number of reads were wrongly assigned at the species level by KRAKEN2_R. Moreover, we found that the databases for bacteria and viruses were better established as compared to the fungal database with limited genome data. In summary, we carefully suggest that different library types and analytical methods with proper databases should be applied for the purpose of microbiome study.


Assuntos
Bactérias/genética , Capsicum/genética , Vírus de DNA/genética , Frutas/crescimento & desenvolvimento , Metagenoma , Vírus de RNA/genética , Transcriptoma , Bactérias/classificação , Capsicum/microbiologia , Capsicum/virologia , Vírus de DNA/classificação , Frutas/microbiologia , Frutas/virologia , Vírus de RNA/classificação , Estações do Ano
4.
New Phytol ; 221(4): 2320-2334, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30266040

RESUMO

Leaf senescence affects plant fitness. Plants that evolve in different environments are expected to acquire distinct regulations of leaf senescence. However, the adaptive and evolutionary roles of leaf senescence are largely unknown. We investigated leaf senescence in 259 natural accessions of Arabidopsis by quantitatively assaying dark-induced senescence responses using a high-throughput chlorophyll fluorescence imaging system. A meta-analysis of our data with phenotypic and climatic information demonstrated biological and environmental links with leaf senescence. We further performed genome-wide association mapping to identify the genetic loci underlying the diversity of leaf senescence responses. We uncovered a new locus, Genetic Variants in leaf Senescence (GVS1), with high similarity to reductase, where a single nonsynonymous nucleotide substitution at GVS1 mediates the diversity of the senescence trait. Loss-of-function mutations of GVS1 in Columbia-0 delayed leaf senescence and increased sensitivity to oxidative stress, suggesting that this GVS1 variant promotes optimal responses to developmental and environmental signals. Intriguingly, gvs1 loss-of-function mutants display allele- and accession-dependent phenotypes, revealing the functional diversity of GVS1 alleles not only in leaf senescence, but also oxidative stress. Our discovery of GVS1 as the genetic basis of natural variation in senescence programs reinforces its adaptive potential in modulating life histories across diverse environments.


Assuntos
Alelos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Variação Genética , Folhas de Planta/genética , Escuridão , Ecótipo , Genoma de Planta , Estudo de Associação Genômica Ampla , Mutação/genética , Estresse Oxidativo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
5.
Mol Phylogenet Evol ; 128: 246-257, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125655

RESUMO

Horizontal gene transfer (HGT) contributes to the genome evolution of living organisms. In particular, several recent studies provide convincing data on the integration of viral sequences into diverse organisms. Here, we identified 101 viral domains integrated into the model plant Arabidopsis proteome. Functional analysis based on gene ontology (GO) terms indicates that viral domains in the Arabidopsis proteome were involved in various stress responses with binding functions. Protein interaction networks support the strong protein interactions of viral domains with other Arabidopsis proteins. A proteome-wide analysis gave a comprehensive evolutionary view of viral domains integrated into 41 plant proteomes, revealing the specific and conserved integration of viral domains into plant proteomes. Phylogenetic analyses revealed the possible HGT between viral domains and plant proteomes. Our results provide an overview of the integration of viral domains into plant proteomes and their possible functional roles associated with plant defense mechanisms.


Assuntos
Arabidopsis/virologia , Vírus de Plantas/genética , Proteoma/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Cromossomos de Plantas/genética , Ontologia Genética , Genes de Plantas , Genoma Viral , Filogenia , Mapas de Interação de Proteínas , Proteínas Virais/genética
6.
J Exp Bot ; 69(12): 3023-3036, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29648620

RESUMO

Leaf senescence involves degenerative but active biological processes that require balanced regulation of pro- and anti-senescing activities. Ethylene and cytokinin are major antagonistic regulatory hormones that control the timing and progression rate of leaf senescence. To identify the roles of these hormones in the regulation of leaf senescence in Arabidopsis, global gene expression profiles in detached leaves of the wild type, an ethylene-insensitive mutant (ein2/ore3), and a constitutive cytokinin response mutant (ahk3/ore12) were investigated during dark-induced leaf senescence. Comparative transcriptome analyses revealed that genes involved in oxidative or salt stress response were preferentially altered in the ein2/ore3 mutant, whereas genes involved in ribosome biogenesis were affected in the ahk3/ore12 mutant during dark-induced leaf senescence. Similar results were also obtained for developmental senescence. Through extensive molecular and physiological analyses in ein2/ore3 and ahk3/ore12 during dark-induced leaf senescence, together with responses when treated with cytokinin and ethylene inhibitor, we conclude that ethylene acts as a senescence-promoting factor via the transcriptional regulation of stress-related responses, whereas cytokinin acts as an anti-senescing agent by maintaining cellular activities and preserving the translational machinery. These findings provide new insights into how plants utilize two antagonistic hormones, ethylene and cytokinin, to regulate the molecular programming of leaf senescence.


Assuntos
Arabidopsis/fisiologia , Folhas de Planta/fisiologia , Transcriptoma/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escuridão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Folhas de Planta/genética
7.
Plant Mol Biol ; 88(3): 233-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904110

RESUMO

The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.


Assuntos
Chrysanthemum/genética , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , Transcriptoma , Cloroplastos/genética , Chrysanthemum/virologia , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
8.
J Exp Bot ; 66(18): 5531-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002973

RESUMO

The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic assays. The comparison of extraction buffers and requirement for dialysis of crude protein extracts resulted in a universal protein extraction protocol, suitable for the preparation of protein extracts from different organs of various species. Individual published kinetic activity assays were optimized and adapted for a semi-high-throughput 96-well assay format. These assays proved to be robust and are thus suitable for physiological phenotyping, enabling the characterization and diagnosis of the physiological state. The potential of the determination of distinct enzyme activity signatures as part of a physiological fingerprint was shown for various organs and tissues from three monocot and five dicot model and crop species, including two case studies with external stimuli. Differential and specific enzyme activity signatures are apparent during inflorescence development and upon in vitro cold treatment of young inflorescences in the monocot ryegrass, related to conditions for doubled haploid formation. Likewise, treatment of dicot spring oilseed rape with elevated CO2 concentration resulted in distinct patterns of enzyme activity responses in leaves.


Assuntos
Metabolismo dos Carboidratos , Proteínas de Plantas/genética , Plantas/genética , Proteômica/métodos , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Proteínas de Plantas/metabolismo , Plantas/enzimologia
9.
J Basic Microbiol ; 55(4): 504-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25515303

RESUMO

Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/análise , Methylobacterium/isolamento & purificação , Prunus/microbiologia , Sphingomonas/isolamento & purificação , Bactérias/genética , Biodiversidade , Biologia Computacional , Methylobacterium/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonas/genética
10.
Mol Biol Rep ; 41(3): 1469-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24395295

RESUMO

The laticiferous system is one of the most important conduit systems in higher plants, which produces a milky-like sap known as latex. Latex contains diverse secondary metabolites with various ecological functions. To obtain a comprehensive overview of the latex proteome, we integrated available latex proteins sequences and constructed a comprehensive dataset composed of 1,208 non-redundant latex proteins from 20 various latex-bearing plants. The results of functional analyses revealed that latex proteins are involved in various biological processes, including transcription, translation, protein degradation and the plant response to environmental stimuli. The results of the comparative analysis showed that the functions of the latex proteins are similar to those of phloem, suggesting the functional conservation of plant vascular proteins. The presence of latex proteins in mitochondria and plastids suggests the production of diverse secondary metabolites. Furthermore, using a BLAST search, we identified 854 homologous latex proteins in eight plant species, including three latex-bearing plants, such as papaya, caster bean and cassava, suggesting that latex proteins were newly evolved in vascular plants. Taken together, this study is the largest and most comprehensive in silico analysis of the latex proteome. The results obtained here provide useful resources and information for characterizing the evolution of the latex proteome.


Assuntos
Látex/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Sequência de Aminoácidos , Simulação por Computador , Proteínas de Plantas/biossíntese
11.
Ann Surg Treat Res ; 106(4): 195-202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38586559

RESUMO

Purpose: Breast cancer is known to be influenced by genetic and environmental factors, and several susceptibility genes have been discovered. Still, the majority of genetic contributors remain unknown. We aimed to analyze the plasma proteome of breast cancer patients in comparison to healthy individuals to identify differences in protein expression profiles and discover novel biomarkers. Methods: This pilot study was conducted using bioresources from Seoul National University Bundang Hospital's Human Bioresource Center. Serum samples from 10 breast cancer patients and 10 healthy controls were obtained. Liquid chromatography-mass spectrometry analysis was performed to identify differentially expressed proteins. Results: We identified 891 proteins; 805 were expressed in the breast cancer group and 882 in the control group. Gene set enrichment and differential expression analysis identified 30 upregulated and 100 downregulated proteins in breast cancer. Among these, 10 proteins were selected as potential biomarkers. Three proteins were upregulated in breast cancer patients, including cluster of differentiation 44, eukaryotic translation initiation factor 2-α kinase 3, and fibronectin 1. Seven proteins downregulated in breast cancer patients were also selected: glyceraldehyde-3-phosphate dehydrogenase, α-enolase, heat shock protein member 8, integrin-linked kinase, tissue inhibitor of metalloproteinases-1, vasodilator-stimulated phosphoprotein, and 14-3-3 protein gamma. All proteins had been previously reported to be related to tumor development and progression. Conclusion: The findings suggest that plasma proteome profiling can reveal potential diagnostic biomarkers for breast cancer and may contribute to early detection and personalized treatment strategies. A further validation study with a larger sample cohort of breast cancer patients is planned.

12.
Physiol Plant ; 148(2): 189-99, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23039825

RESUMO

R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants.


Assuntos
Antocianinas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/genética , Fatores de Transcrição/genética , Antocianinas/análise , Arabidopsis/metabolismo , Expressão Gênica , Especificidade de Órgãos , Proteínas Associadas a Pancreatite , Fenótipo , Pigmentação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Psychiatry Investig ; 19(9): 703-711, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36202105

RESUMO

OBJECTIVE: Considerable evidence suggests that neuroinflammation plays an important role in the pathophysiology of major depressive disorder (MDD). However, the relationship between serum C4 binding protein (C4BP) and white matter (WM) tract integrity in MDD has not been investigated. METHODS: We obtained diffusion tensor images of 44 patients with MDD and 44 healthy controls and performed TRActs Constrained by UnderLying Anatomy (TRACULA) analysis to assess WM tract integrity. Serum C4-binding protein alpha chain (C4BPA) and C4- binding protein beta chain (C4BPB) levels were measured and in-between group comparisons were obtained. The correlation between serum C4BP levels and WM tract integrity was examined. RESULTS: In comparison to healthy controls, both serum C4BPA and C4BPB were higher in MDD. Also, fractional anisotropy (FA) was increased in the left cingulum-angular bundle (CAB) in MDD, but not healthy controls (HCs). A significant correlation was found between serum C4BP and FA levels in the right cingulum-cingulate gyrus bundle (CCG) in MDD. CONCLUSION: This study is the first to investigate the correlation between serum C4BP levels and WM tract integrity in MDD. We identified an increase in WM integrity in the left CAB region in MDD. Furthermore, serum C4BP levels were higher in MDD, and this finding correlated with increased WM integrity in the right CCG region.

14.
PeerJ ; 8: e9588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821540

RESUMO

BACKGROUND: Plums are a kind of stone fruit, a category that includes peaches, cherries, apricots, and almonds. In Korea, Japanese plum trees are usually cultivated as they best suit the climate. To date, there have been few studies in Korea on viruses infecting plum trees compared to those infecting peach trees. METHODS: To identify viruses and viroids infecting plum trees, we collected leaf samples from six different plum cultivars and subjected them to RNA-sequencing (RNA-seq). Six different plum transcriptomes were de novo assembled using the Trinity assembler followed by BLAST searching against a viral reference database. RESULTS: We identified hop stunt viroid (HSVd) and six viruses, including apple chlorotic leaf spot virus (ACLSV), little cherry virus-1 (LChV-1), peach virus D (PeVD), peach leaf pitting-associated virus (PLPaV), plum bark necrosis stem pitting-associated virus (PBNSPaV), and prunus necrotic ringspot virus (PNRSV), from six plum cultivars by RNA-seq. RT-PCR confirmed the infection of HSVd and three viruses-ACLSV, PBNSPaV, and PNRSV-in plum trees. However, RT-PCR demonstrated that plum trees in this study were not infected by LChV-1, PeVD, or PLPaV. It is likely that the three viruses LChV-1, PeVD, and PLPaV as identified by RNA-seq were contaminants from other peach libraries caused by index misassignment, which suggests that careful confirmation by other methods should be carried out in next-generation sequencing (NGS)-based virus identification. Taken together, we identified a viroid and three viruses infecting plum trees in Korea.

15.
Physiol Plant ; 135(4): 331-41, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19226311

RESUMO

The cell wall and extracellular matrix in higher plants include secreted proteins that play critical roles in a wide range of cellular processes, such as structural integrity and biogenesis. Compared with the intensive cell wall proteomic studies in Arabidopsis, the list of cell wall proteins identified in monocot species is lacking. Therefore, we conducted a large-scale proteomic analysis of secreted proteins from rice. Highly purified secreted rice proteins were obtained from the medium of a suspension of callus culture and were analyzed with multidimensional protein identification technology (MudPIT). As a result, we could detect a total of 555 rice proteins by MudPIT analysis. Based on bioinformatic analyses, 27.7% (154 proteins) of the identified proteins are considered to be secreted proteins because they possess a signal peptide for the secretory pathway. Among the 154 identified proteins, 27% were functionally categorized as stress response proteins, followed by metabolic proteins (26%) and factors involved in protein modification (24%). Comparative analysis of cell wall proteins from Arabidopsis and rice revealed that one third of the secreted rice proteins overlapped with those of Arabidopsis. Furthermore, 25 novel rice-specific secreted proteins were found. This work presents the large scale of the rice secretory proteome from culture medium, which contributes to a deeper understanding of the rice secretome.


Assuntos
Parede Celular/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/genética , Células Cultivadas , Biologia Computacional , Meios de Cultura , Oryza/genética , Proteínas de Plantas/genética , Proteoma/genética
16.
Sci Rep ; 8(1): 1844, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382911

RESUMO

Many recent studies have demonstrated that several known and unknown viruses infect many horticultural plants. However, the elucidation of a viral population and the understanding of the genetic complexity of viral genomes in a single plant are rarely reported. Here, we conducted metatranscriptome analyses using six different peach trees representing six individual peach cultivars. We identified six viruses including five viruses in the family Betaflexiviridae and a novel virus belonging to the family Tymoviridae as well as two viroids. The number of identified viruses and viroids in each transcriptome ranged from one to six. We obtained 18 complete or nearly complete genomes for six viruses and two viroids using transcriptome data. Furthermore, we analyzed single nucleotide variations for individual viral genomes. In addition, we analyzed the amount of viral RNA and copy number for identified viruses and viroids. Some viruses or viroids were commonly present in different cultivars; however, the list of infected viruses and viroids in each cultivar was different. Taken together, our study reveals the viral population in a single peach tree and a comprehensive overview for the diversities of viral communities in different peach cultivars.


Assuntos
Frutas/genética , Frutas/virologia , Prunus persica/genética , Prunus persica/virologia , Genoma Viral/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Viral/genética , Transcriptoma/genética , Viroides/genética
17.
Front Plant Sci ; 8: 250, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280501

RESUMO

Leaf senescence is influenced by its life history, comprising a series of developmental and physiological experiences. Exploration of the biological principles underlying leaf lifespan and senescence requires a schema to trace leaf phenotypes, based on the interaction of genetic and environmental factors. We developed a new approach and concept that will facilitate systemic biological understanding of leaf lifespan and senescence, utilizing the phenome high-throughput investigator (PHI) with a single-leaf-basis phenotyping platform. Our pilot tests showed empirical evidence for the feasibility of PHI for quantitative measurement of leaf senescence responses and improved performance in order to dissect the progression of senescence triggered by different senescence-inducing factors as well as genetic mutations. Such an establishment enables new perspectives to be proposed, which will be challenged for enhancing our fundamental understanding on the complex process of leaf senescence. We further envision that integration of phenomic data with other multi-omics data obtained from transcriptomic, proteomic, and metabolic studies will enable us to address the underlying principles of senescence, passing through different layers of information from molecule to organism.

18.
Genom Data ; 6: 260-1, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697390

RESUMO

Peach (Prunus persica) is one of the most popular stone fruits worldwide. Next generation sequencing (NGS) has facilitated genome and transcriptome analyses of several stone fruit trees. In this study, we conducted de novo transcriptome analyses of two peach cultivars grown in Korea. Leaves of two cultivars, referred to as Jangtaek and Mibaek, were harvested and used for library preparation. The two prepared libraries were paired-end sequenced by the HiSeq2000 system. We obtained 8.14 GB and 9.62 GB sequence data from Jangtaek and Mibaek (NCBI accession numbers: SRS1056585 and SRS1056587), respectively. The Trinity program was used to assemble two transcriptomes de novo, resulting in 110,477 (Jangtaek) and 136,196 (Mibaek) transcripts. TransDecoder identified possible coding regions in assembled transcripts. The identified proteins were subjected to BLASTP search against NCBI's non-redundant database for functional annotation. This study provides transcriptome data for two peach cultivars, which might be useful for genetic marker development and comparative transcriptome analyses.

19.
Genom Data ; 6: 262-3, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697391

RESUMO

Plum is a globally grown stone fruit and can be divided into several species. In particular, the Prunus salicina, which is native to China, is widely grown in many fruit orchards in Korea and Japan, as well as the United States and Australia. The transcriptome data for Prunus salicina has not been reported to our knowledge. In this study, we performed de novo transcriptome assembly for two selected P. salicina cultivars referred to as Akihime and Formosa (commercially important plum cultivars in Korea) using next generation sequencing. We obtained a total of 9.04 GB and 8.68 GB raw data from Akihime and Formosa, respectively. De novo transcriptome assembly using Trinity revealed 155,169 and 160,186 transcripts for Akihime and Formosa. Next, we identified 121,278 and 116,544 proteins from Akihime and Formosa using TransDecoder. We performed BLASTP against the NCBI non-redundant (nr) dataset to annotate proteins. Taken together, this is the first transcriptome data for P. salicina to our knowledge.

20.
Genom Data ; 6: 271-2, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697395

RESUMO

Sour cherry (Prunus cerasus) in the genus Prunus in the family Rosaceae is one of the most popular stone fruit trees worldwide. Of known sour cherry cultivars, the Schattenmorelle is a famous old sour cherry with a high amount of fruit production. The Schattenmorelle was selected before 1650 and described in the 1800s. This cultivar was named after gardens of the Chateau de Moreille in which the cultivar was initially found. In order to identify new genes and to develop genetic markers for sour cherry, we performed a transcriptome analysis of a sour cherry. We selected the cultivar Schattenmorelle, which is among commercially important cultivars in Europe and North America. We obtained 2.05 GB raw data from the Schattenmorelle (NCBI accession number: SRX1187170). De novo transcriptome assembly using Trinity identified 61,053 transcripts in which N50 was 611 bp. Next, we identified 25,585 protein coding sequences using TransDecoder. The identified proteins were blasted against NCBI's non-redundant database for annotation. Based on blast search, we taxonomically classified the obtained sequences. As a result, we provide the transcriptome of sour cherry cultivar Schattenmorelle using next generation sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA