Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35078166

RESUMO

Metal-organic frames (MOFs) are regarded as excellent candidates for supercapacitors that have attracted much attention because of their diversity, adjustability and porosity. However, both poor structural stability in aqueous alkaline electrolytes and the low electrical conductivity of MOF materials constrain their practical implementation in supercapacitors. In this study, bimetallic CoNi-MOF were synthesized to enhance the electrical conductivity and electrochemical activity of nickel-based MOF, as well as the electrochemical performance of the CoNi-MOF in multiple alkaline electrolytes was investigated. The CoNi-MOF/active carbon device, as-fabricated with a 1 M KOH electrolyte, possesses a high energy density of 35 W h kg-1with a power density of 1450 W kg-1, exhibiting outstanding cycling stability of 95% over 10,000 cycles. The design of MOF-based electrode materials and the optimization selection of electrolytes pave the way for constructing high-performance supercapacitors.

2.
Nanotechnology ; 31(13): 135403, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31770727

RESUMO

Earth-abundant Fe2O3 is a promising material for the negative electrode of supercapacitors by virtue of its wide potential windows. However, the unsatisfactory electrical conductivity and poor ionic diffusion rate within Fe2O3 results in degraded electrochemical performance. In this work, to address these issues, we demonstrate an easy method to synthesize Fe-based zeolitic imidazolate framework (Fe-ZIF) derived α-Fe2O3@C with remarkable supercapacitive properties. The as-obtained α-Fe2O3@C electrode, with the particular benefit of dispersed distribution of carbon, enabling fast electrochemical response, presents a prospective specific capacitance of 161 Fg-1 at a current density of 1 Ag-1. Furthermore, by using the α-Fe2O3@C architecture as the negative electrode, we fabricated a supercapacitor with Na0.5MnO2 as the positive electrode. Our supercapacitor shows a high energy density of 25 Whkg-1, while the corresponding power density is 2400 Wkg-1 at a current density of 2 Ag-1.

3.
J Colloid Interface Sci ; 671: 283-293, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38810342

RESUMO

Reinforcing the development of efficient and robust electrocatalysts is pivotal in addressing the challenges associated with oxygen evolution reactions (OER) in water splitting technology. Here, an amorphous/crystalline low-ruthenium-doped bimetallic layered double hydroxide (LDH) electrocatalyst (a/c-CoCu + Rux-LDH/NF) with massive oxygen vacancy on nickel foam was fabricated via ion-exchange and chemical etching, facilitating efficient OER. Among the various catalyst materials tested, the a/c-CoCu + Ru10-LDH/NF exhibits remarkable performance in the OER when employed in an alkaline electrolyte containing 1 M KOH. Achieving a minimal overpotential at 10 mA cm-2 of 214 mV, exhibiting a low Tafel slope value of 64.3 mV dec-1 and exceptional durability lasting for over 100 h. Theoretical calculations demonstrate that the electron structure and d-band center of CoCu-LDH can be effectively regulated through the utilization of a strategy possessing abundant oxygen vacancies and a Ru-doped crystalline/amorphous heterostructure. It will lead to optimized adsorption free energy of reactants and reduced energy barriers for OER. The construction strategy proposed in this paper for catalysts with amorphous/crystalline heterointerfaces offer a novel opportunity to achieve highly efficient OER.

4.
Dalton Trans ; 52(3): 754-762, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36562484

RESUMO

In this work, a novel anionic Cd-MOF ([(CH3)2NH2]n[Cd(HL)DMF]n·2nH2O·nDMF, H4L = 1,2,4,5-tetrakis[(4-carboxy)phenoxymethyl]benzene) was synthesized for the first time. As a precursor, it was utilized to obtain Fe@Cd-MOF crystals via the substitution of Fe3+ ions due to a negatively charged framework and free-coordinated carboxyl group. Fe3O4/Fe-embedded carbon-based materials (Fe@Cd-MOFD) were further constructed by deriving Fe@Cd-MOF at high temperatures. The derived Fe@Cd-MOFD showed a structure resembling a central city with metal redox centers embedded into a carbon matrix. The introduced Fe3+ ions formed a local nano-sized metal oxide upon annealing, and these derived carbon materials offered high electronic conductivity. These pushed Fe@Cd-MOFD to remarkable electrochemical performance with an initial discharge capacity of 1703.8 mA h g-1. This work offers new insights into the fabrication of novel MOF-derived iron oxide hybrids for lithium storage.

5.
Nanoscale ; 13(11): 5570-5593, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33725084

RESUMO

Designing and synthesizing new materials with special physical and chemical properties are the key steps to assembling high performance supercapacitors. Metal organic framework (MOF) derived porous carbon materials have drawn great attention in supercapacitors because of their large specific surface area, high chemical/thermal stability and tunable pore structure. Thus, the recent development of porous carbon as an electrode material for supercapacitors is reviewed. The types, design and synthesis strategies of porous carbon are systematically summarized. This review will be divided into three main parts: (1) the design and synthesis of MOF precursors and templates for MOF-derived porous carbon materials; (2) the application of different types of MOF-derived carbon in supercapacitors; and (3) the design of typical structures of porous carbon composites for supercapacitors. Finally, the problems and challenges confronted when using porous carbon are assessed and elaborated, and some suggestions on future research directions are proposed.

6.
Nanoscale ; 12(9): 5669-5677, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32101234

RESUMO

Engineering multicomponent electroactive materials is an effective strategy to improve electrochemical performance by adjusting the atomic and electronic structure. In this work, we directly synthesize oriented bimetallic CoNi-MOF nanosheets on CFP (carbon fiber paper). The CoNi-MOF/CFP shows high specific capacitance, outstanding rate capability and long-term cycling stability compared to a monometallic Ni-MOF or Co-MOF. By adjusting the Co/Ni molar ratio, CoNi23/CFP (Co : Ni = 2 : 3) displays the highest specific capacitance (2033 F g-1 at 1 A g-1). The introduction of Co into the Ni-MOF matrix shortens Co/Ni-centered bond distances, resulting in improved bond strength, facilitating the charge transfer and increasing the electrical conductivity of the CoNi-MOF, which were proved by X-ray absorption fine structure (XAFS) spectroscopy, high angle annular dark field (HAADF) imaging, and electrochemical impedance spectroscopy (EIS). Our study demonstrates the origin of performance improvements and, therefore, may provide a feasible scheme to unlock high-performance MOF electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA