Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Virol ; 95(22): e0105521, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468173

RESUMO

Enterovirus A71 (EV-A71) is one of the major etiological agents of hand, foot, and mouth disease (HFMD), and infection occasionally leads to fatal neurological complications in children. However, only inactivated whole-virus vaccines against EV-A71 are commercially available in Mainland China. Furthermore, the mechanisms underlying the infectivity and pathogenesis of EV-A71 remain to be better understood. By adaptation of an EV-A71 B5 strain in monkey Vero cells in the presence of brilliant black BN (E151), an anti-EV-A71 agent, a double mutant with VP1-V238A,K244R emerged whose infection was enhanced by E151. The growth of the reverse genetics (RG) mutant RG/B5-VP1-V238A,K244R (RG/B5-AR) was promoted by E151 in Vero cells but inhibited in other human and murine cells, while its parental wild type, RG/B5-wt, was strongly prevented by E151 from infection in all tested cells. In the absence of E151, RG/B5-AR exhibited defective cell entry/exit, resulting in reduced viral transmission and growth in vitro. It had augmented binding affinity to sulfated glycans, cells, and tissue/organs, which probably functioned as decoys to restrict viral dissemination and infection. RG/B5-AR was also attenuated, with a 355 times higher 50% lethal dose (LD50) and a shorter timing of virus clearance than those of RG/B5-wt in suckling AG129 mice. However, it remained highly immunogenic in adult AG129 mice and protected their suckling mice from lethal EV-A71 challenges through maternal neutralizing antibodies. Overall, discovery of the attenuated mutant RG/B5-AR contributes to better understanding of virulence determinants of EV-A71 and to further development of novel vaccines against EV-A71. IMPORTANCE Enterovirus A71 (EV-A71) is highly contagious in children and has been responsible for thousands of deaths in Asia-Pacific region since the 1990s. Unfortunately, the virulence determinants and pathogenesis of EV-A71 are not fully clear. We discovered that a novel EV-A71 mutant, VP1-V238A,K244R, showed growth attenuation with reduced efficiency of cell entry/exit. In the Vero cell line, which has been approved for manufacturing EV-A71 vaccines, the growth defects of the mutant were compensated by a food dye, brilliant black BN. The mutant also showed augmented binding affinity to sulfated glycans and other cellular components, which probably restricted viral infection and dissemination. Therefore, it was virulence attenuated in a mouse model but still retained its immunogenicity. Our findings suggest the mutant as a promising vaccine candidate against EV-A71 infection.


Assuntos
Enterovirus Humano A , Doença de Mão, Pé e Boca/virologia , Animais , Anticorpos Neutralizantes , Antígenos Virais , Linhagem Celular Tumoral , Chlorocebus aethiops , Enterovirus Humano A/patogenicidade , Enterovirus Humano A/fisiologia , Humanos , Camundongos , Células NIH 3T3 , Células Vero , Virulência , Internalização do Vírus , Replicação Viral
2.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31167919

RESUMO

Hand, foot, and mouth disease (HFMD), a highly contagious disease in children, is caused by human enteroviruses, including enterovirus 71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus A6 (CVA6). Although HFMD is usually mild and self-limiting, EV71 infection occasionally leads to fatal neurological disorders. Currently, no commercial antiviral drugs for HFMD treatment are available. Here, numerous sulfonated azo dyes, widely used as food additives, were identified as having potent antiviral activities against human enteroviruses. Among them, brilliant black BN (E151) was able to inhibit all EV71, CVA16, and CVA6 strains tested. In rhabdomyosarcoma cells, the 50% inhibitory concentrations of the dye E151 for various strains of EV71 ranged from 2.39 µM to 28.12 µM, whereas its 50% cytotoxic concentration was 1,870 µM. Food azo dyes, including E151, interacted with the vertex of the 5-fold axis of EV71 and prevented viral entry. Their efficacy in viral inhibition was regulated by amino acids at VP1-98, VP1-145, and/or VP1-246. Dye E151 not only prevented EV71 attachment but also eluted attached viruses in a concentration-dependent manner. Moreover, E151 inhibited the interaction between EV71 and its cellular uncoating factor cyclophilin A. In vivo studies demonstrated that E151 at a dose of 200 mg/kg of body weight/day given on the initial 4 days of challenge protected AG129 mice challenged with 10× the 50% lethal dose of wild-type EV71 isolates. Taken together, these data highlight E151 as a promising antiviral agent against EV71 infection.IMPORTANCE Human enterovirus 71 (EV71) is one of the causative agents of hand, foot, and mouth disease in children and is responsible for thousands of deaths in the past 20 years. Food azo dyes have been widely used since the nineteenth century; however, their biological effects on humans and microbes residing in humans are poorly understood. Here, we discovered that one of these dyes, brilliant black BN (E151), was particularly effective in inhibiting the infectivity of EV71 in both cell culture and mouse model studies. Mechanistic studies demonstrated that these sulfonated dyes mainly competed with EV71 attachment factors for viral binding to block viral attachment/entry to host cells. As no commercial antiviral drugs against EV71 are currently available, our findings open an avenue to exploit the development of permitted food dye E151 as a potential anti-EV71 agent.


Assuntos
Compostos Azo/farmacologia , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/tratamento farmacológico , Virulência/efeitos dos fármacos , Animais , Chlorocebus aethiops , Ciclofilina A/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Enterovirus Humano A/efeitos dos fármacos , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Aditivos Alimentares/farmacologia , Humanos , Camundongos , Células Vero , Ligação Viral/efeitos dos fármacos
3.
J Med Virol ; 91(4): 707-710, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30411364

RESUMO

To determine whether Pteropine orthoreovirus (PRV) exposure has occurred in Singapore, we tested 856 individuals from an existing serum panel collected from 2005-2013. After an initial screen with luciferase immunoprecipitation system and secondary confirmation with virus neutralization test, we identified at least seven individuals with specific antibodies against PRV in both assays. Our findings confirm that PRV spillover into human populations is relatively common in this region of the world.


Assuntos
Anticorpos Antivirais/sangue , Orthoreovirus/imunologia , Infecções por Reoviridae/epidemiologia , Testes Sorológicos/métodos , Zoonoses/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Infecções por Reoviridae/virologia , Estudos Soroepidemiológicos , Singapura/epidemiologia , Adulto Jovem , Zoonoses/virologia
4.
J Med Virol ; 87(12): 2149-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26106066

RESUMO

This study aims to assess the incidence rate of Pteropine orthreovirus (PRV) infection in patients with acute upper respiratory tract infection (URTI) in a suburban setting in Malaysia, where bats are known to be present in the neighborhood. Using molecular detection of PRVs directly from oropharyngeal swabs, our study demonstrates that PRV is among one of the common causative agents of acute URTI with cough and sore throat as the commonest presenting clinical features. Phylogenetic analysis on partial major outer and inner capsid proteins shows that these PRV strains are closely related to Melaka and Kampar viruses previously isolated in Malaysia. Further study is required to determine the public health significance of PRV infection in Southeast Asia, especially in cases where co-infection with other pathogens may potentially lead to different clinical outcomes.


Assuntos
Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/diagnóstico , Infecções Respiratórias/virologia , Adolescente , Adulto , Idoso , Proteínas do Capsídeo/genética , Feminino , Genótipo , Humanos , Incidência , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Orofaringe/virologia , Pacientes Ambulatoriais , Filogenia , Infecções por Reoviridae/epidemiologia , Infecções Respiratórias/epidemiologia , Análise de Sequência de DNA , População Suburbana , Adulto Jovem
5.
Artigo em Inglês | MEDLINE | ID: mdl-22782307

RESUMO

Until the Nipah outbreak in Malaysia in 1999, knowledge of human infections with the henipaviruses was limited to the small number of cases associated with the emergence of Hendra virus in Australia in 1994. The Nipah outbreak in Malaysia alerted the global public health community to the severe pathogenic potential and widespread distribution of these unique paramyxoviruses. This chapter briefly describes the initial discovery of Nipah virus and the challenges encountered during the initial identification and characterisation of the aetiological agent responsible for the outbreak of febrile encephalitis. The initial attempts to isolate Nipah virus from the bat reservoir host are also described.


Assuntos
Surtos de Doenças , Reservatórios de Doenças/veterinária , Encefalite Viral/diagnóstico , Encefalite Viral/epidemiologia , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/epidemiologia , Vírus Nipah/isolamento & purificação , Animais , Austrália/epidemiologia , Quirópteros/virologia , Chlorocebus aethiops , Encefalite Viral/líquido cefalorraquidiano , Encefalite Viral/virologia , Vírus Hendra/isolamento & purificação , Vírus Hendra/patogenicidade , Infecções por Henipavirus/líquido cefalorraquidiano , Infecções por Henipavirus/virologia , Humanos , Malásia/epidemiologia , Vírus Nipah/patogenicidade , Células Vero
6.
Emerg Microbes Infect ; 12(1): 2208683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37143369

RESUMO

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Infecções por Reoviridae , Animais , Humanos , Orthoreovirus/genética , Indonésia , Malásia , Orthoreovirus de Mamíferos/genética , Mamíferos
7.
Artigo em Inglês | MEDLINE | ID: mdl-23077814

RESUMO

Viruses in the family Picornaviridae are classified into nine genera. Within the family Picornaviridae, two species: Encephalomyocarditis virus and Theilovirus, are listed under the genus Cardiovirus. A novel Theilovirus, Saffold virus (SAFV), was first reported in 2007. Since then, numerous SAFV isolates have been detected around the world and genetic recombinations have been reported among them. In 2009, SAFV-Penang was isolated from a febrile child with influenza-like illness in Malaysia. SAFV-Penang is a genotype 3 SAFV. In this study we investigated the genome features of SAFV-Penang to exclude the possibility it is a recombinant variant. SAFV-Penang was found not to be a recombinant variant but to have three unique non-synonymous substitutions, alanine [A689], lysine [K708] and isoleucine [I724] in the VP1 protein.


Assuntos
Theilovirus/genética , DNA Viral , Genes Virais , Genótipo , Humanos , Análise de Sequência de DNA , Theilovirus/classificação
8.
J Gen Virol ; 92(Pt 12): 2930-2936, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21849518

RESUMO

We previously described three new Malaysian orthoreoviruses designated Pulau virus, Melaka virus and Kampar virus. Melaka and Kampar viruses were shown to cause respiratory disease in humans. These viruses, together with Nelson Bay virus, isolated from Australian bats, are tentatively classified as different strains within the species Pteropine orthoreovirus (PRV), formerly known as Nelson Bay orthoreovirus, based on the small (S) genome segments. Here we report the sequences of the large (L) and medium (M) segments, thus completing the whole-genome characterization of the four PRVs. All L and M segments were highly conserved in size and sequence. Conserved functional motifs previously identified in other orthoreovirus gene products were also found in the deduced proteins encoded by the cognate segments of these viruses. Detailed sequence analysis identified two genetic lineages divided into the Australian and Malaysian PRVs, and potential genetic reassortment among the M and S segments of the three Malaysian viruses.


Assuntos
Quirópteros/virologia , Evolução Molecular , Genoma Viral , Orthoreovirus/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Austrália , Malásia , Dados de Sequência Molecular , Orthoreovirus/classificação , Orthoreovirus/isolamento & purificação , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
9.
Bull World Health Organ ; 89(9): 675-82, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21897488

RESUMO

OBJECTIVE: To evaluate the performance of a newly developed point-of-care test (POCT) for the detection of measles-specific IgM antibodies in serum and oral fluid specimens and to assess if measles virus nucleic acid could be recovered from used POCT strips. METHODS: The POCT was used to test 170 serum specimens collected through measles surveillance or vaccination programmes in Ethiopia, Malaysia and the Russian Federation: 69 were positive for measles immunoglobulin M (IgM) antibodies, 74 were positive for rubella IgM antibodies and 7 were positive for both. Also tested were 282 oral fluid specimens from the measles, mumps and rubella (MMR) surveillance programme of the United Kingdom of Great Britain and Northern Ireland. The Microimmune measles IgM capture enzyme immunoassay was the gold standard for comparison. A panel of 24 oral fluids was used to investigate if measles virus haemagglutinin (H) and nucleocapsid (N) genes could be amplified by polymerase chain reaction directly from used POCT strips. FINDINGS: With serum POCT showed a sensitivity and specificity of 90.8% (69/76) and 93.6% (88/94), respectively; with oral fluids, sensitivity and specificity were 90.0% (63/70) and 96.2% (200/208), respectively. Both H and N genes were reliably detected in POCT strips and the N genes could be sequenced for genotyping. Measles virus genes could be recovered from POCT strips after storage for 5 weeks at 20-25 °C. CONCLUSION: The POCT has the sensitivity and specificity required of a field-based test for measles diagnosis. However, its role in global measles control programmes requires further evaluation.


Assuntos
Anticorpos Antivirais/sangue , Imunoglobulina M/sangue , Sarampo/diagnóstico , Morbillivirus/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito/normas , Saliva/virologia , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Técnicas Imunoenzimáticas , Lactente , Internacionalidade , Sarampo/epidemiologia , Pessoa de Meia-Idade , Nucleocapsídeo/sangue , Nucleocapsídeo/genética , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Adulto Jovem
10.
Virology ; 555: 19-34, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422703

RESUMO

Enterovirus A71 (EV-A71) is a causative agent of hand, foot and mouth disease and occasionally causes death in children. Its infectivity and pathogenesis, however, remain to be better understood. Three sulfonated azo dyes, including acid red 88 (Ar88), were identified to enhance the infectivity of EV-A71, especially isolates with VP1-98K, 145E (-KE), by mainly promoting viral genome release in vitro. Enzymatic removal of sulfated glycosaminoglycans (GAGs) or knockout of xylosyltransferase II (XT2) responsible for biosynthesis of sulfated GAGs weakened the Ar88 enhanced EV-A71 infection. Ar88 is proposed to prevent the -KE variants from being trapped by sulfated GAGs at acidic pH and to facilitate the viral interaction with uncoating factors for genome release in endosomes. The results suggest dual roles of sulfated GAGs as attachment factors and as decoys during host interaction of EV-A71 and caution that these artificial dyes in our environment can enhance viral infection.


Assuntos
Compostos Azo/toxicidade , Enterovirus Humano A , Poluentes Ambientais/toxicidade , Glicosaminoglicanos/toxicidade , Doença de Mão, Pé e Boca/virologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Enterovirus Humano A/metabolismo , Enterovirus Humano A/patogenicidade , Humanos , Células Vero
11.
Viruses ; 13(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803356

RESUMO

Enterovirus A71 (EV-A71) and coxsackievirus A16 (CA16) are major etiological agents of hand foot and mouth disease (HFMD) in children, which may result in fatal neurological complications. The development of safe, cost effective vaccines against HFMD, especially for use in developing countries, is still a top public health priority. We have successfully generated a stable, cold-adapted, temperature sensitive/conditional lethal EV-A71 through adaptive culturing in Vero cells at incrementally lower cultivation temperatures. An additional 40 passages at an incubation temperature of 28 °C, and a temperature reversion study at an incubation temperature of 37 °C and 39.5 °C, reveals the virus's phenotypic and genetic stability at the predefined culture conditions. Six unique mutations (two in noncoding regions and four in nonstructural protein-coding genes) in combination may have contributed to its stable phenotype and inability to fully revert to its original wild phenotype. The safety and immunogenicity of this stable, cold-adapted, temperature sensitive/conditional lethal EV-A71 was performed in six monkeys. None of the inoculated monkeys developed any obvious clinical illness except one which developed a transient spike of fever. No gross postmortem lesion or abnormal histological finding was noted for all monkeys at autopsy. No virus was reisolated although EV-A71 specific RNA was detected in serum samples collected on both day 4 and day 8 postinoculation. Only EV-A71 RNA and viral antigen were detected in the spleen homogenate and peripheral blood mononuclear cells, respectively, collected on day 4. The two remaining monkeys developed good humoral immune response on day 14 and day 30 post-inoculation.


Assuntos
Anticorpos Antivirais/sangue , Enterovirus Humano A/genética , Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/sangue , Linhagem Celular , Chlorocebus aethiops , Feminino , Doença de Mão, Pé e Boca/virologia , Macaca fascicularis , Masculino , RNA Viral/sangue , Células Vero , Vacinas Virais/efeitos adversos
12.
Virol Sin ; 34(3): 262-269, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31016480

RESUMO

Our previous work has shown that Saffold virus (SAFV) induced several rodent and primate cell lines to undergo apoptosis (Xu et al. in Emerg Microb Infect 3:1-8, 2014), but the essential viral proteins of SAFV involved in apoptotic activity lack study. In this study, we individually transfected the viral proteins of SAFV into HEp-2 and Vero cells to assess their ability to induce apoptosis, and found that the 2B and 3C proteins are proapoptotic. Further investigation indicated the transmembrane domain of the 2B protein is essential for the apoptotic activity and tetramer formation of the 2B protein. Our research provides clues for the possible mechanisms of apoptosis induced by SAFV in different cell lines. It also opens up new directions to study viral proteins (the 2B, 3C protein), and sets the stage for future exploration of any possible link between SAFV, inclusive of its related uncultivable genotypes, and multiple sclerosis.


Assuntos
Apoptose , Picornaviridae/fisiologia , Proteínas Virais/genética , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Picornaviridae/genética , Transfecção , Células Vero
13.
J Neuropathol Exp Neurol ; 67(2): 162-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18219253

RESUMO

Previous neuropathologic studies of Enterovirus 71 encephalomyelitis have not investigated the anatomic distribution of inflammation and viral localization in the central nervous system (CNS) in detail. We analyzed CNS and non-CNS tissues from 7 autopsy cases from Malaysia and found CNS inflammation patterns to be distinct and stereotyped. Inflammation was most marked in spinal cord gray matter, brainstem, hypothalamus, and subthalamic and dentate nuclei; it was focal in the cerebrum, mainly in the motor cortex, and was rare in dorsal root ganglia. Inflammation was absent in the cerebellar cortex, thalamus, basal ganglia, peripheral nerves, and autonomic ganglia. The parenchymal inflammatory response consisted of perivascular cuffs, variable edema, neuronophagia, and microglial nodules. Inflammatory cells were predominantly CD68-positive macrophage/microglia, but there were a few CD8-positive lymphocytes. There were no viral inclusions; viral antigens and RNA were localized only in the somata and processes of small numbers of neurons and in phagocytic cells. There was no evidence of virus in other CNS cells, peripheral nerves, dorsal root autonomic ganglia, or non-CNS organs. The results indicate that Enterovirus 71 is neuronotropic, and that, although hematogenous spread cannot be excluded, viral spread into the CNS could be via neural pathways, likely the motor but not peripheral sensory or autonomic pathways. Viral spread within the CNS seems to involve motor and possibly other pathways.


Assuntos
Sistema Nervoso Central/virologia , Encefalomielite , Enterovirus Humano A/metabolismo , Inflamação/virologia , Sistema Nervoso Central/fisiopatologia , Pré-Escolar , Encefalomielite/patologia , Encefalomielite/fisiopatologia , Encefalomielite/virologia , Feminino , Humanos , Lactente , Inflamação/etiologia , Masculino , Vias Neurais/fisiopatologia , Vias Neurais/virologia
14.
J Virol Methods ; 143(2): 140-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17442409

RESUMO

Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.


Assuntos
Apoptose , Encéfalo/virologia , Infecções por Paramyxoviridae/patologia , Paramyxoviridae/patogenicidade , Animais , Antígenos Virais/análise , Encéfalo/citologia , Encéfalo/patologia , Caspases/análise , Córtex Cerebelar/patologia , Córtex Cerebelar/virologia , Córtex Cerebral/patologia , Córtex Cerebral/virologia , Modelos Animais de Doenças , Proteína Ligante Fas/análise , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Sistema Límbico/virologia , Camundongos , Camundongos Endogâmicos ICR , Necrose , Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , RNA Viral/análise , Proteínas Virais/análise
15.
Malays J Pathol ; 29(2): 63-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19108397

RESUMO

The Nipah virus outbreak in Malaysia (September 1998 to May 1999) resulted in 265 cases of acute encephalitis with 105 deaths, and near collapse of the billion-dollar pig-farming industry. Because it was initially attributed to Japanese encephalitis, early control measures were ineffective, and the outbreak spread to other parts of Malaysia and nearby Singapore. The isolation of the novel aetiological agent, the Nipah virus (NiV), from the cerebrospinal fluid of an outbreak victim was the turning point which led to outbreak control 2 months later. Together with the Hendra virus, NiV is now recognised as a new genus, Henipavirus (Hendra + Nipah), in the Paramyxoviridae family. Efforts of the local and international scientific community have since elucidated the epidemiology, clinico-pathophysiology and pathogenesis of this new disease. Humans contracted the infection from close contact with infected pigs, and formed the basis for pig-culling that eventually stopped the outbreak. NiV targeted medium-sized and small blood vessels resulting in endothelial multinucleated syncytia and fibrinoid necrosis. Autopsies revealed disseminated cerebral microinfarctions resulting from vasculitis-induced thrombosis and direct neuronal involvement. The discovery of NiV in the urine and saliva of Malaysian Island flying foxes (Pteropus hypomelanus and Petropus vampyrus) implicated these as natural reservoir hosts of NiV. It is probable that initial transmission of NiV from bats to pigs occurred in late 1997/early 1998 through contamination of pig swill by bat excretions, as a result of migration of these forest fruitbats to cultivated orchards and pig-farms, driven by fruiting failure of forest trees during the El Nino-related drought and anthropogenic fires in Indonesia in 1997-1998. This outbreak emphasizes the need for sharing information of any unusual illnesses in animals and humans, an open-minded approach and close collaboration and co-ordination between the medical profession, veterinarians and wildlife specialists in the investigation of such illnesses. Environmental mismanagement (such as deforestation and haze) has far-reaching effects, including encroachment of wildlife into human habitats and the introduction of zoonotic infections into domestic animals and humans.


Assuntos
Surtos de Doenças , Encefalite Viral/epidemiologia , Infecções por Henipavirus/epidemiologia , Animais , Quirópteros/virologia , Encefalite Viral/patologia , Encefalite Viral/transmissão , Infecções por Henipavirus/patologia , Infecções por Henipavirus/transmissão , Humanos , Malásia/epidemiologia , Vírus Nipah/isolamento & purificação , Suínos/virologia
17.
J Infect Dev Ctries ; 11(3): 215-219, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28368854

RESUMO

INTRODUCTION: Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that has spilled over from bats to humans. Though initially found only in bats, further case studies have found viable virus in ill patients. METHODOLOGY: PubMed was queried with the keywords of Nelson Bay orthoreovirus OR Pteropine orthoreovirus OR Melaka orthoreovirus OR Kampar orthoreovirus, and returned 17 hits. RESULTS: Based on prevalence studies, the presence of PRV has been reported in Malaysia and Vietnam, both developing countries. Other case reports also provide further evidence of the presence of PRV in the Southeast Asian region. Despite the absence of PRV in their home countries, travellers from Hong Kong and Japan to Indonesia have returned to their countries ill with this virus, indicating that local communities in Indonesia might be affected by this virus. CONCLUSIONS: This work aims to bring to light this emerging zoonotic respiratory virus circulating among developing countries in Southeast Asia. To improve the understanding of PRV of the medical and scientific community in the Southeast Asian region, this work introduces the general features of PRV, reports of imported PRV, prevalence, and clinical features of PRV. Gaps in knowledge about PRV have also been identified in this work, and we hope that future studies can be undertaken to improve our understanding of this virus.


Assuntos
Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Zoonoses/epidemiologia , Zoonoses/virologia , Animais , Sudeste Asiático/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/patologia , Doenças Transmissíveis Emergentes/virologia , Humanos , Prevalência , Infecções por Reoviridae/patologia , Infecções Respiratórias/patologia , Clima Tropical , Zoonoses/patologia
19.
Viruses ; 8(2)2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26901216

RESUMO

Saffold Virus (SAFV) is a human cardiovirus that has been suggested to cause severe infection of the central nervous system (CNS). Compared to a similar virus, Theiler's murine encephalomyelitis virus (TMEV), SAFV has a truncated Leader (L) protein, a protein essential in the establishment of persistent CNS infections. In this study, we generated a chimeric SAFV by replacing the L protein of SAFV with that of TMEV. We then compared the replication in cell cultures and pathogenesis in a mouse model. We showed that both SAFV and chimeric SAFV are able to infect Vero and Neuro2a cells well, but only chimeric SAFV was able to infect RAW264.7. We then showed that mice lacking IFN-α/ß and IFN-γ receptors provide a good animal model for SAFV infection, and further identified the locality of the infection to the ventral horn of the spine and several locations in the brain. Lastly, we showed that neither SAFV nor chimeric SAFV causes persistence in this model. Overall, our results provide a strong basis on which the mechanisms underlying Saffold virus induced neuropathogenesis can be further studied and, hence, facilitating new information about its pathogenesis.


Assuntos
Proteínas do Capsídeo/metabolismo , Infecções por Cardiovirus/virologia , Cardiovirus/patogenicidade , Sistema Nervoso Central/virologia , Animais , Proteínas do Capsídeo/genética , Cardiovirus/genética , Cardiovirus/fisiologia , Infecções por Cardiovirus/patologia , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Feminino , Genoma Viral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Virulência , Replicação Viral
20.
Emerg Microbes Infect ; 5: e60, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329847

RESUMO

Enterovirus 71 (EV71) is a neurotrophic virus that causes hand, foot and mouth disease (HFMD) and occasional neurological infection among children. It infects primate cells but not rodent cells, primarily due to the incompatibility between the virus and the expressed form of its receptor, scavenger receptor class B member 2 (SCARB2) protein, on rodent cells (mSCARB2). We previously generated adapted strains (EV71:TLLm and EV71:TLLmv) that were shown to productively infect primate and rodent cell lines and whose genomes exhibited a multitude of non-synonymous mutations compared with the EV71:BS parental virus. In this study, we aimed to identify mutations that are necessary for productive infection of murine cells by EV71:BS. Using reverse genetics and site-directed mutagenesis, we constructed EV71 infectious clones with specific mutations that generated amino acid substitutions in the capsid VP1 and VP2 proteins. We subsequently assessed the infection induced by clone-derived viruses (CDVs) in mouse embryonic fibroblast NIH/3T3 and murine neuroblastoma Neuro-2a cell lines. We found that the CDV:BS-VP1(K98E,E145A,L169F) with three substitutions in the VP1 protein-K98E, E145A and L169F-productively infected both mouse cell lines for at least three passages of the virus in murine cells. Moreover, the virus gained the ability to utilize the mSCARB2 protein to infect murine cell lines. These results demonstrate that the three VP1 residues cooperate to effectively interact with the mSCARB2 protein on murine cells and permit the virus to infect murine cells. Gain-of-function studies similar to the present work provide valuable insight into the mutational trajectory required for EV71 to infect new host cells previously non-susceptible to infection.


Assuntos
Aminoácidos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Enterovirus Humano A/química , Enterovirus Humano A/fisiologia , Mutação , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas do Capsídeo/química , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Enterovirus Humano A/genética , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Genética Reversa , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA