Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Environ Res ; 252(Pt 3): 118959, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663669

RESUMO

Exposure to volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, xylene, and formaldehyde from long-distance buses has been reported to adversely affect human health. This study investigates the concentrations of these five VOCs and evaluates their health risks to drivers and passengers on board. Ten trips from Taipei to Taichung were performed during the warm and cold seasons of 2021-2022. Two locations inside the bus were established to collect air samples by a 6-liter canister for drivers and passengers. Exposure concentrations of benzene, toluene, ethylbenzene, and xylene were analyzed via gas chromatography with a flame ionization detector and the formaldehyde concentration was monitored using a formaldehyde meter. Subsequently, a Monte Carlo simulation was conducted to evaluate the carcinogenic and non-carcinogenic risks of the five VOCs. Formaldehyde emerged as the highest detected compound (9.06 ± 3.77 µg/m3), followed by toluene (median: 6.11 µg/m3; range: 3.86-14.69 µg/m3). In particular, formaldehyde was identified to have the significantly higher concentration during non-rush hours (10.67 ± 3.21 µg/m3) than that during rush hours (7.45 ± 3.41 µg/m3) and during the warm season (10.71 ± 2.97 µg/m3) compared with that during the cold season (7.41 ± 4.26 µg/m3). Regarding non-carcinogenic risks to drivers and passengers, the chronic hazard indices for these five VOCs were under 1 to indicate an acceptable risk. In terms of carcinogenic risk, the median risks of benzene and formaldehyde for drivers were 2.88 × 10-6 (95% confidence interval [CI]: 2.11 × 10-6 - 5.13 × 10-6) and 1.91 × 10-6 (95% CI: 4.54 × 10-7 - 3.44 × 10-6), respectively. In contrast, the median carcinogenic risks of benzene and formaldehyde for passengers were less than 1 × 10-6 to present an acceptable risk. This study suggests that benzene and formaldehyde may present carcinogenic risks for drivers. Moreover, the non-carcinogenic risk for drivers and passengers is deemed acceptable. We recommended that the ventilation frequency be increased to mitigate exposure to VOCs in long-distance buses.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Humanos , Medição de Risco , Poluentes Atmosféricos/análise , Veículos Automotores , Taiwan , Exposição Ambiental/análise , Formaldeído/análise , Emissões de Veículos/análise , Exposição Ocupacional/análise , Monitoramento Ambiental
2.
Int Arch Occup Environ Health ; 97(4): 401-412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480609

RESUMO

OBJECTIVE: This study investigates the associations of α1-antitrypsin, inter-α-trypsin inhibitor heavy chain (ITIH4), and 8-isoprostane with lung function in shipyard workers exposed to occupational metal fume fine particulate matter (PM2.5), which is known to be associated with adverse respiratory outcomes. METHODS: A 3-year follow-up study was conducted on 180 shipyard workers with 262 measurements. Personal exposure to welding fume PM2.5 was collected for an 8-h working day. Pre-exposure, post-exposure, and delta (∆) levels of α1-antitrypsin, ITIH4, and 8-isoprostane were determined in urine using enzyme-linked immunosorbent assays. Post-exposure urinary metals were sampled at the beginning of the next working day and analyzed by inductively coupled plasma-mass spectrometry. Lung function measurements were also conducted the next working day for post-exposure. RESULTS: An IQR increase in PM2.5 was associated with decreases of 2.157% in FEV1, 2.806% in PEF, 4.328% in FEF25%, 5.047% in FEF50%, and 7.205% in FEF75%. An IQR increase in PM2.5 led to increases of 42.155 µg/g in ∆α1-antitrypsin and 16.273 µg/g in ∆ITIH4. Notably, IQR increases in various urinary metals were associated with increases in specific biomarkers, such as post-urinary α1-antitrypsin and ITIH4. Moreover, increases in ∆ α1-antitrypsin and ∆ITIH4 were associated with decreases in FEV1/FVC by 0.008% and 0.020%, respectively, and an increase in ∆8-isoprostane resulted in a 1.538% decline in FVC. CONCLUSION: Our study suggests that urinary α1-antitrypsin and ITIH4 could indicate early lung function decline in shipyard workers exposed to metal fume PM2.5, underscoring the need for better safety and health monitoring to reduce respiratory risks.


Assuntos
Exposição Ocupacional , Soldagem , Humanos , Seguimentos , Estudos Prospectivos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Metais , Material Particulado/análise , Pulmão , Biomarcadores/urina
3.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065013

RESUMO

Gac fruit (Momordica cochinchinensis Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, solid-liquid ratio, and extraction time. The primary objective is to maximize the yield of gac oil while assessing its antioxidant capacity. To analyze the kinetics of the solid-liquid extraction process, both first-order and second-order kinetic models were employed, with the second-order model providing the best fit for the experimental data. In addition, the potential of gac fruit peel as a precursor for biochar production was investigated through carbonization. The resultant biochars were evaluated for their efficacy in adsorbing crystal violet (CV) dye from aqueous solutions. The adsorption efficiency of the biochars was found to be dependent on the carbonization temperature, with the highest efficiency observed for BCMC550 (91.72%), followed by BCM450 (81.35%), BCMC350 (78.35%), and BCMC250 (54.43%). The adsorption isotherm data conformed well to the Langmuir isotherm model, indicating monolayer adsorption behavior. Moreover, the adsorption kinetics were best described by the pseudo-second-order model. These findings underscore the potential of gac fruit and its byproducts for diverse industrial and environmental applications, highlighting the dual benefits of optimizing gac oil extraction and utilizing the peel for effective dye removal.


Assuntos
Carvão Vegetal , Frutas , Violeta Genciana , Carvão Vegetal/química , Adsorção , Frutas/química , Violeta Genciana/química , Violeta Genciana/isolamento & purificação , Cinética , Corantes/química , Corantes/isolamento & purificação , Temperatura , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
4.
Mol Med ; 29(1): 159, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996782

RESUMO

BACKGROUND: Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS: AECII MLE-12 cells were exposed to 0, 0.1, or 1 µg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS: We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS: We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.


Assuntos
Via de Sinalização Hippo , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular , Quinases Semelhantes a Duplacortina , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
5.
Ecotoxicol Environ Saf ; 263: 115239, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441946

RESUMO

BACKGROUND: Benzene, toluene, ethylbenzene, and xylenes, collectively known as BTEX, are hazardous chemical mixtures, and their neurological health effects have not been thoroughly evaluated. We examined the association between BTEX exposure and neurological hospital admissions. METHODS: This was a multicity time-series study conducted in five major Taiwanese cities. Daily hospital admission records for diseases of the nervous system from January 1, 2016, to December 31, 2017, were collected from the National Health Insurance Research Database. Ambient BTEX and criteria pollutant concentrations and weather factors were collected from Photochemical Assessment Monitoring Stations. We applied a Poisson generalized additive model (GAM) and weighted quantile sum regression to calculate city-specific effect estimates for BTEX and conducted a random-effects meta-analysis to pool estimates. RESULTS: We recorded 68 neurological hospitalizations per day during the study period. The daily mean BTEX mixture concentrations were 22.5 µg/m3, ranging from 18.3 µg/m3 in Kaohsiung to 27.0 µg/m3 in Taichung, and toluene (13.6 µg/m3) and xylene (5.8 µg/m3) were the dominant chemicals. Neurological hospitalizations increased by an average of 1.6 % (95 % CI: 0.6-2.6 %) for every interquartile range (15.8 µg/m3) increase in BTEX at lag 0 estimated using a GAM model. A quartile increase in the weighted sum of BTEX exposure was associated with a 1.7 % (95 % CI: 0.6-2.8 %) increase in daily neurological hospitalizations. CONCLUSION: We found consistent acute adverse effects of BTEX on neurological hospitalizations in Taiwan, with toluene and xylene as the dominant chemicals. These findings aid the development of more targeted public health interventions.


Assuntos
Poluentes Atmosféricos , Xilenos , Humanos , Xilenos/toxicidade , Xilenos/análise , Taiwan , Derivados de Benzeno/toxicidade , Derivados de Benzeno/análise , Tolueno/análise , Benzeno/análise , Hospitalização , Poluentes Atmosféricos/análise , Monitoramento Ambiental
6.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047607

RESUMO

Polycyclic aromatic hydrocarbons are a class of chemicals that occur naturally. They generally demonstrate a high degree of critical toxicity towards humans. Acenaphthene and naphthalene contain compounds that are commonly found in the environment as compared to other PAHs. Consequently, a reliable method of detecting PAHs is crucial for the monitoring of water quality. A colorimetric method based on sodium nitrite-functionalized gold nanoparticles was developed in this study for acenaphthene and naphthalene detection. Different functionalized parameters are determined for the optimization of assay conditions. A linear relationship was found in the analyte concentration range of 0.1-10 ppm with the limit of detection for acenaphthene and naphthalene being 0.046 ppm and 0.0015 ppm, respectively, under the optimized assay conditions. The method's recovery rate for actual samples falls within the range of 98.4-103.0%. In selective and anti-interference tests, the presence of cations and anions has minimal impact on the detection of the analyte. The colorimetric detection method proposed in this study effectively determines the presence of the analyte in real water samples and has a high recovery rate.


Assuntos
Nanopartículas Metálicas , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Acenaftenos , Ouro , Colorimetria , Naftalenos , Hidrocarbonetos Policíclicos Aromáticos/química
7.
Environ Res ; 213: 113644, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697085

RESUMO

Many volatile organic compounds (VOCs) are used for experiments at universities, and most of them contain benzene, toluene, ethylbenzene, xylene, and an extraction solvent of dichloromethane. This study aimed to investigate the indoor concentrations of these five compounds in different locations on campus and to evaluate possible health risks for faculty members and students in a medical university. We selected 10 locations as sampling sites to conduct 4-h monitoring sessions on weekdays each season during 2019-2020. We used a 6-liter canister to collect air samples and analyzed these five VOCs via gas chromatography with a flame ionization detector. Monte Carlo simulation was performed to evaluate the carcinogenic and noncarcinogenic risks of these five VOCs. We found that dichloromethane was the most highly detected compound (median: 621.07 µg/m3; range: 44.01-8523.91 µg/m3), and the Department of Medicine had the highest concentration of the total of these VOCs among all of the locations (median: 5595.29 µg/m3; range: 1565.67-7398.66 µg/m3). The median carcinogenic risks of dichloromethane and benzene were 6.36 × 10-5 (95% confidence interval [CI]: 6.83 × 10-6-7.37 × 10-4) and 5.47 × 10-6 (95% CI: 4.03 × 10-7-2.42 × 10-5), respectively, for faculty members, and the lower risks of 3.14 × 10-5 (95% CI: 3.39 × 10-6-3.64 × 10-4) and 2.69 × 10-6 (95% CI: 1.97 × 10-7-1.19 × 10-5) were estimated for the students. The chronic noncarcinogenic risks of four VOCs were less than one, except for dichloromethane with a median hazard index of 1.92 (95% CI: 2.11 × 10-1-2.22 × 101). This study observed the spatial variation in the concentrations of the total of five VOCs and dichloromethane. The carcinogenic risks were classified as being at the possible level, and the noncarcinogenic risk of dichloromethane was greater than the acceptable level. Increasing local exhaust ventilation during the experiment and reducing the using amount of dichloromethane are recommended actions to reduce VOCs exposures in the medical university.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Benzeno/análise , Benzeno/toxicidade , Monitoramento Ambiental/métodos , Humanos , Cloreto de Metileno/análise , Medição de Risco , Universidades , Compostos Orgânicos Voláteis/análise
8.
Ecotoxicol Environ Saf ; 234: 113370, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255250

RESUMO

BACKGROUND: Few environmental epidemiological studies and no large multicity studies have evaluated the acute short-term health effects of ambient non-methane hydrocarbons (NMHC), the essential precursors of ground-level ozone and secondary organic aerosol formation. OBJECTIVE: We conducted this multicity time-series study in Taiwan to evaluate the association between airborne NMHC exposure and cardiorespiratory hospital admissions. METHODS: We collected the daily mean concentrations of NMHC, fine particulate matter (PM2.5), ozone (O3), weather conditions, and daily hospital admission count for cardiorespiratory diseases between 2014 and 2017 from eight major cities of Taiwan. We applied an over-dispersed generalized additive Poisson model (GAM) with adjustment for temporal trends, seasonal variations, weather conditions, and calendar effects to compute the effect estimate for each city. Then we conducted a random-effects meta-analysis to pool the eight city-specific effect estimates to obtain the overall associations of NMHC exposure on lag0 day with hospital admissions for respiratory and circulatory diseases, respectively. RESULTS: On average, a 0.1-ppm increase of lag0 NMHC demonstrated an overall 0.9% (95% CI: 0.4-1.3%) and 0.8% (95% CI: 0.4-1.2%) increment of hospital admissions for respiratory and circulatory diseases, respectively. Further analyses with adjustment for PM2.5 and O3 in the multi-pollutant model or sensitivity analyses with restricting the NMHC monitoring from the general stations only confirmed the robustness of the association between ambient NMHC exposure and cardiorespiratory hospitalizations. CONCLUSION: Our findings provide robust evidence of higher cardiorespiratory hospitalizations in association with acute exposure to ambient NMHC in eight major cities of Taiwan.

9.
Ecotoxicol Environ Saf ; 246: 114164, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244167

RESUMO

We investigated the effects of antibiotics, drugs, and metals on lung and intestinal microbiomes after sub-chronic exposure of low-level air pollution in ageing rats. Male 1.5-year-old Fischer 344 ageing rats were exposed to low-level traffic-related air pollution via whole-body exposure system for 3 months with/without high-efficiency particulate air (HEPA) filtration (gaseous vs. particulate matter with aerodynamic diameter of ≤2.5 µm (PM2.5) pollution). Lung functions, antibiotics, drugs, and metals in lungs were examined and linked to lung and fecal microbiome analyses by high-throughput sequencing analysis of 16 s ribosomal (r)DNA. Rats were exposed to 8.7 µg/m3 PM2.5, 10.1 ppb NO2, 1.6 ppb SO2, and 23.9 ppb O3 in average during the study period. Air pollution exposure decreased forced vital capacity (FVC), peak expiratory flow (PEF), forced expiratory volume in 20 ms (FEV20), and FEF at 25∼75% of FVC (FEF25-75). Air pollution exposure increased antibiotics and drugs (benzotriazole, methamphetamine, methyl-1 H-benzotriazole, ketamine, ampicillin, ciprofloxacin, pentoxifylline, erythromycin, clarithromycin, ceftriaxone, penicillin G, and penicillin V) and altered metals (V, Cr, Cu, Zn, and Ba) levels in lungs. Fusobacteria and Verrucomicrobia at phylum level were increased in lung microbiome by air pollution, whereas increased alpha diversity, Bacteroidetes and Proteobacteria and decreased Firmicutes at phylum level were occurred in intestinal microbiome. Lung function decline was correlated with increasing antibiotics, drugs, and metals in lungs as well as lung and intestinal microbiome dysbiosis. The antibiotics, drugs, and Cr, Co, Ca, and Cu levels in lung were correlated with lung and intestinal microbiome dysbiosis. The lung microbiome was correlated with intestinal microbiome at several phylum and family levels after air pollution exposure. Our results revealed that antibiotics, drugs, and metals in the lung caused lung and intestinal microbiome dysbiosis in ageing rats exposed to air pollution, which may lead to lung function decline.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Microbioma Gastrointestinal , Masculino , Ratos , Animais , Disbiose/induzido quimicamente , Antibacterianos/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Material Particulado/análise , Pulmão , Metais/análise , Envelhecimento , Poluentes Atmosféricos/análise
10.
Ecotoxicol Environ Saf ; 215: 112144, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33743405

RESUMO

Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) has been linked to adverse health outcomes in welding workers. The objective of this study was to investigate associations of chronic exposure to metal fume PM2.5 in shipyard workers with health outcomes. A longitudinal study was conducted to determine the effects of metal fume PM2.5 on FeNO, urinary metals, urinary oxidative stress, inflammation, and stress hormones in workers. There were 20 office workers and 49 welding workers enrolled in this study who were followed-up for a second year. We observed that Fe, Zn, and Mn were abundant in PM2.5 to which welding workers were personally exposed, whereas PM2.5 to which office workers were personally exposed was dominated by Pb, Cu, and Zn. We observed in the first and/or second visits that urinary 8-iso-prostaglandin F2-α (PGF2α) and 8-hydroxy-2'-deoxy guanosine (8-OHdG) were significantly increased by exposure. An increase in urinary interleukin (IL)-6 and decreases in urinary serotonin and cortisol were observed in the first and/or second visits after exposure. PM2.5 was associated with decreases in urinary 8-OHdG and cortisol among workers. Next, we observed that urinary Ni, Co, and Fe had significantly increased among workers after a year of exposure. Urinary metals were associated with decreases in urinary 8-iso-PGF2α and cortisol among workers. Urinary Ni, Cu, and Fe levels were associated with an increase in urinary IL-6 and a decrease in urinary cortisol among workers. In conclusion, chronic exposure to metal fume PM2.5 was associated with inflammation and a cortisol deficiency in shipyard workers, which could associate with adrenal glands dysfunction.


Assuntos
Hidrocortisona/sangue , Metais , Exposição Ocupacional/estatística & dados numéricos , Material Particulado , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Gases , Humanos , Inflamação , Interleucina-6 , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Estresse Oxidativo , Soldagem
11.
Part Fibre Toxicol ; 15(1): 44, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413208

RESUMO

BACKGROUND: Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 µm (PM1), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. RESULTS: The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) µg/m3 of PM1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM1 exposure. CONCLUSIONS: Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution.


Assuntos
Poluentes Atmosféricos/toxicidade , Encéfalo/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Poluição Relacionada com o Tráfego/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Edema Encefálico/induzido quimicamente , Eletroencefalografia , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod
12.
Nanomedicine ; 14(7): 2329-2339, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29074311

RESUMO

We investigated the effects of nickel oxide nanoparticles (NiONPs) on the pulmonary inflammopathology. NiONPs were intratracheally installed into mice, and lung injury and inflammation were evaluated between 1 and 28 days. NiONPs caused significant increases in LDH, total protein, and IL-6 and a decrease in IL-10 in the BALF and increases in 8-OHdG and caspase-3 in lung tissues at 24 h. Airway inflammation was present in a dose-dependent manner from the upper to lower airways at 24 h of exposure as analyzed by SPECT. Lung parenchyma inflammation and small airway inflammation were observed by CT after NiONP exposure. 8-OHdG in lung tissues had increased with formation of fibrosis at 28 days. Focal adhesion was the most important pathways identified at 24 h as determined by protemics, whereas glutathione metabolism was the most important identified at 28 days. Our results demonstrated the pulmonary inflammopathology caused by NiONPs based on image-to-biochemical approaches.


Assuntos
Lesão Pulmonar/patologia , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Pneumonia/patologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Líquido da Lavagem Broncoalveolar/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Níquel/administração & dosagem , Níquel/química , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Proteoma/metabolismo
13.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213072

RESUMO

To maximize the extraction of antioxidants from Chenopodium formosanum seeds, the process factors, such as the ethanol concentration (0⁻100%), extraction time (30⁻180 min) and temperature (30⁻70 °C), for the extraction of the bioactive contents as well as the antioxidant capacity are evaluated using response surface methodology (RSM). The experimental results fit well with quadratic models. The extract was identified by GC/MS, and it was found that some active compounds had antioxidant, repellency and insecticidal activities. Various concentrations of the extract were prepared for the evaluation of the insecticidal activity against Tribolium castaneum, and the toxicity test results indicated that the extract was toxic to Tribolium castaneum, with an LC50 value of 354.61 ppm. The oxidative stability of the olive oil determined according to the radical scavenging activity and p-anisidine test demonstrates that the extract obtained from the Chenopodium formosanum seeds can retard lipid oxidation.


Assuntos
Antioxidantes/química , Chenopodium/química , Inseticidas/química , Inseticidas/farmacologia , Extratos Vegetais/química , Sementes/química , Animais , Oxirredução/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tribolium/efeitos dos fármacos
14.
Toxicol Appl Pharmacol ; 327: 13-22, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433709

RESUMO

Inhaled zinc oxide nanoparticles (ZnONPs) have high deposition rates in the alveolar region of the lungs; however, the adverse health effects of ZnONPs on the respiratory system are unclear. Herein, pathobiological responses of the respiratory system of mice that received intratracheal administration of ZnONPs were investigated by a combination of molecular and imaging (SPECT and CT) approaches. Also, normal BEAS-2B and adenocarcinoma A549 cells were used to confirm the results in mice. First, female BALB/c mice were administrated a series of doses of 20-nm ZnONPs and were compared to the phosphate-buffered saline control for 24-h and 28-day follow-up observations. Field emission-scanning electron microscopy and an energy-dispersive X-ray microanalysis were first used to characterize ZnONPs. After 24h, instilled ZnONPs had caused significant increases in lactic dehydrogenase (LDH) in bronchoalveolar lavage fluid (BALF) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), caspase-3, and the p63 tumor marker in lung tissues (p<0.05). Airway inflammation was present in a dose-dependent manner from the upper to the lower airway as analyzed by SPECT. After 28days, p63 had significantly increased due to ZnONP exposure in lung tissues (p<0.05). Pulmonary inflammatory infiltration mainly occurred in the left and right subsegments of the secondary bronchial bifurcation as observed by CT. A significant increase in p63 and decrease in TTF1 levels were observed in BEAS-2B cells by ZnONP (p<0.05), but not in A549 cells. Our results demonstrated that regional lung inflammation occurred with ZnONP exposure. We also showed that p63 was consistently overexpressed due to ZnONP exposure in vivo and in vitro. This work provides unique findings on the p63 response and the pathobiology in response to ZnONPs, which could be important to the study of pulmonary toxicity and repair.


Assuntos
Pneumopatias/induzido quimicamente , Pneumopatias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Células A549 , Animais , Líquido da Lavagem Broncoalveolar/citologia , Caspase 3/biossíntese , Caspase 3/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , L-Lactato Desidrogenase/metabolismo , Pulmão/patologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Tomografia Computadorizada de Emissão de Fóton Único , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição
15.
Environ Res ; 140: 634-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26073201

RESUMO

Exposure to road traffic noise, fine particulate matter (aerodynamic diameter ≤2.5 µm; PM2.5) and nitrogen oxides (NOx) has been associated with transient changes in blood pressure, but whether an interaction exists remains unclear. This panel study investigated whether noise, PM2.5 and NOx exposure were independently associated with changes in 24-h ambulatory blood pressure. We recruited 33 males and 33 females aged 18-32 years as study subjects. Personal noise exposure and ambulatory blood pressure were monitored simultaneously in 2007. During the data collection periods, 24-h data on PM2.5 and NOx from five air-quality monitors within 6 km of participants' home addresses were used to estimate their individual exposures. Linear mixed-effects regression models were used to estimate single and combined effects on ambulatory blood pressure. Exposure to both noise and PM2.5 was significantly associated with increased systolic blood pressure (SBP) and diastolic blood pressure (DBP) over 24h; NOx exposure was only significantly related to elevated DBP. Twenty-four-hour ambulatory blood pressure increased with the current noise exposure of 5 A-weighted decibels (dBA) (SBP 1.44 [95% confidence interval: 1.16, 1.71] mmHg and DBP 1.40 [1.18, 1.61] mmHg) and PM2.5 exposure of 10-µg/m(3) (SBP 0.81 [0.19, 1.43] mmHg and DBP 0.63 [0.17, 1.10] mmHg), as well as the current NOx exposure of 10-ppb (DBP 0.54 [0.12, 0.97] mmHg) after simultaneous adjustment. These findings suggest that exposure to noise and air pollutants may independently increase ambulatory blood pressure and the risk of cardiovascular diseases.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Ruído , Material Particulado/toxicidade , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
Toxics ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39058141

RESUMO

This study aimed to measure personal exposure to sulfuric acid in the electroplating industry to establish a predictive model and test its validation. We collected indoor air parameters and related information from four electroplating plants. Silica gel sorbents were used to collect air samples using high-performance ion chromatography. We collected air samples from three plants (i.e., Plant B, Plant C, and Plant D) and applied multiple linear regressions to build a predictive model. Eight samples collected from the fourth plant (i.e., Plant A) were used to validate the model. A total of 41 samples were collected with a mean of 25.0 ± 9.8 µg/m3 (range 12.1-51.7 µg/m3) in this study, including Plant A (8 samples, 17.5 ± 2.8 µg/m3, 13.0-22.0 µg/m3), Plant B (11 samples, 36.5 ± 9.7 µg/m3, 23.1-51.7 µg/m3), Plant C (11 samples, 16.4 ± 1.7 µg/m3, 12.1-17.8 µg/m3), and Plant D (11 samples, 27.4 ± 1.7 µg/m3, 24.1-29.9 µg/m3). Plant B was significantly higher in sulfuric acid than the other plants. Workers from the electroplating process plants were exposed to sulfuric acid at 29.0 ± 11.5 µg/m3. The predictive model for personal exposure to sulfuric acid fit the data well (r2 = 0.853; adjusted r2 = 0.837) and had an accuracy of 5.52 µg/m3 (bias ± precision; 4.98 ± 2.38 µg/m3), validated by the personal sampling of the fourth plant. This study observed that sulfuric acid exposure was lower than the permissible exposure level of 1000 µg/m3 in Taiwan and the United States, and only two samples were lower than the European Union standard of 50 µg/m3. The developed model can be applied in epidemiological studies to predict personal exposure to sulfuric acid in plants using electroplating.

17.
Phytomedicine ; 135: 156013, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39270571

RESUMO

BACKGROUND: Allergic asthma is a chronic bronchial inflammatory disease closely associated with abnormal immune responses of dendritic cells (DCs) and allergen-specific type 2 T helper (Th2) cells. Indirubin (IR), a natural aryl hydrocarbon receptor (AhR) ligand, exerts anti-inflammatory and immunomodulatory properties. PURPOSE: In this study, we aimed to clarify whether IR exhibits immunomodulatory action on DCs via AhR activation and investigated the antiallergic effects of IR in a mouse model of allergic asthma. METHODS: Lipopolysaccharide (LPS)-activated bone marrow-derived DCs were treated with IR. Their mRNA expressions, cytokine production, and phenotype patterns were determined by a quantitative real-time PCR, ELISA, flow cytometry, and RNA sequencing. The mixed lymphocyte reaction was utilized to evaluate the regulatory function of IR-treated DCs on T-cell differentiation. Moreover, mice with ovalbumin (OVA)-induced allergic asthma were treated with IR. Thereafter, the airway hyperresponsiveness (AHR), allergen-specific IgE production, cytokine levels, airway inflammation, and T-cell responses were evaluated. RESULTS: Treatment of LPS-stimulated DCs with 20 µM IR significantly reduced IL-12 and TNF-α production while increasing IL-10 secretion. Meanwhile, these DCs expressed decreased levels of CD80 but increased levels of Jagged 1 surface molecules. However, the effects of IR on DCs were reversed by pretreatment with the AhR antagonist, CH223191. Additionally, the coculture of these tolerogenic-like DCs with allogeneic CD4+T cells promoted the generation of Foxp3+ regulatory T (Treg) cells. A transcriptomic analysis identified several downregulated genes that are involved in regulating cell migration, cytokine secretion, and inflammatory responses in DCs after IR treatment. In an asthmatic murine model, oral administration of 25 mg kg-1 body weight of IR efficiently alleviated the development of AHR, OVA-specific IgE production, and levels of Th2-type cytokines (IL-4, IL-5, and IL-13) and the CCL11 chemokine. IR treatment also attenuated inflammatory cell recruitment and mucus production in the lungs. Notably, an enhanced frequency of Foxp3+ Treg cells and reduced effector T-cell proliferation associated with increased levels of IL-10 and TGF-ß were observed in IR-treated mice. CONCLUSION: IR can induce tolerogenic-like BMDCs which promote the differentiation of Treg cells. Importantly, the expansion of Foxp3+ Treg cells contributed to the therapeutic efficacy of IR against allergic asthma.

18.
Environ Sci Pollut Res Int ; 31(16): 24129-24138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436861

RESUMO

The study aimed to evaluate the impact of occupational noise on hearing loss among healthcare workers using audiometry. A longitudinal study was conducted with a six-month follow-up period in a hospital with 21 participants, divided into high-noise-exposure (HNE) and low-noise-exposure (LNE) groups. Mean noise levels were higher in the HNE group (70.4 ± 4.5 dBA), and hearing loss was measured using pure-tone audiometry at baseline and follow-up. The HNE group had significantly higher mean threshold levels at frequencies of 0.25 kHz, 0.5 kHz, 4.0 kHz, and an average of 0.5, 1, 2, and 4 kHz (all p-values < 0.05) after the follow-up period. After adjusting for confounding factors, the HNE group had significantly higher hearing loss levels at 0.25 kHz, 0.5 kHz, and average frequencies of 0.5, 1, 2, and 4 kHz compared to the LNE group at the second measurement. Occupational noise levels above 65 dBA over six months were found to cause significant threshold changes at frequencies of 0.25 kHz, 0.5 kHz, and an average of 0.5-4.0 kHz. This study highlights the risk of noise-induced hearing loss among healthcare workers and emphasizes the importance of implementing effective hearing conservation programs in the workplace. Regular monitoring and assessment of noise levels and hearing ability, along with proper use of personal protective equipment, are crucial steps in mitigating the impact of occupational noise exposure on the hearing health of healthcare workers.


Assuntos
Perda Auditiva Provocada por Ruído , Ruído Ocupacional , Doenças Profissionais , Exposição Ocupacional , Humanos , Estudos Longitudinais , Ruído Ocupacional/efeitos adversos , Perda Auditiva Provocada por Ruído/epidemiologia , Recursos Humanos em Hospital , Audição
19.
Toxicol Appl Pharmacol ; 266(2): 298-306, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164665

RESUMO

Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO(4); 526 µg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO(4) exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO(4)-exposed SH rats were greater than those on NiSO(4)-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO(4). Both NAC and celecoxib mitigated the NiSO(4)-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM.


Assuntos
Antioxidantes/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Inflamação/induzido quimicamente , Níquel/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Celecoxib , Injeções Intraperitoneais , Masculino , Modelos Teóricos , Pirazóis/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sulfonamidas/farmacologia
20.
J Nanosci Nanotechnol ; 13(4): 2974-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23763188

RESUMO

The photocatalytic oxidation of titanium dioxide is conducted in a suspension of submicrometer-sized particles, and an additional separation step is required to recover these catalyst particles from treated water, which presents a major drawback in treating wastewater. In this study, magnetic photocatalysts of spinel structure Fe3O4 coated with SiO2 and TiO2 by employing various heat treatments were synthesized and their characterization was carried out by thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. Furthermore, the reaction behavior in photocatalytic processes involving photocatalysts of porous composite for treating wastewater were analyzed to enhance their activity and recovery. The results showed that the calcination temperatures of the magnetic photocatalysts significantly affect their properties, i.e., rutile ratio, magnetization, surface area, and photocatalytic activity. The photocatalytic activity of these catalysts was measured using the decomposition of benzoic acid, which can be well modeled by the Langmuir-Hinshelwood kinetic equation. Furthermore, because of the paramagnetic behaviors of the prepared TiO2/SiO2/Fe3O4, these magnetic photocatalyst could be easily recovered by applying a magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA