Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36671359

RESUMO

Streptococcus suis is a zoonotic pathogen causing disease in both animals and humans, and the emergence of increasingly resistant bacteria to antimicrobial agents has become a significant challenge globally. The objective of this study was to investigate the genetic basis for declining susceptibility to penicillin and other ß-lactams among S. suis. Antimicrobial susceptibility testing and penicillin-binding proteins (PBP1a, PBP2a, PBP2b, and PBP2x) sequence analysis were performed on 225 S. suis isolated from diseased pigs. This study found that a growing trend of isolates displayed reduced susceptibility to ß-lactams including penicillin, ampicillin, amoxicillin/clavulanic acid, and cephalosporins. A total of 342 substitutions within the transpeptidase domain of four PBPs were identified, of which 18 substitutions were most statistically associated with reduced ß-lactams susceptibility. Almost all the S. suis isolates which exhibited penicillin-non-susceptible phenotype (71.9%) had single nucleotide polymorphisms, leading to alterations of PBP1a (P409T) and PBP2a (T584A and H588Y). The isolates may manifest a higher level of penicillin resistance by additional mutation of M341I in the 339STMK active site motif of PBP2x. The ampicillin-non-susceptible isolates shared the mutations in PBP1a (P409T) and PBP2a (T584A and H588Y) with additional alterations of PBP2b (T625R) and PBP2x (T467S). The substitutions, including PBP1a (M587S/T), PBP2a (M433T), PBP2b (I428L), and PBP2x (Q405E/K/L), appeared to play significant roles in mediating the reduction in amoxicillin/clavulanic acid susceptibility. Among the cephalosporins, specific mutations strongly associated with the decrease in cephalosporins susceptibility were observed for ceftiofur: PBP1a (S477D/G), PBP2a (E549Q and A568S), PBP2b (T625R), and PBP2x (Q453H). It is concluded that there was genetically widespread presence of PBPs substitutions associated with reduced susceptibility to ß-lactam antibiotics.

2.
PeerJ ; 11: e15283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193031

RESUMO

Background: Emergence of Vibrio parahaemolyticus pandemic strain O3:K6 was first documented in 1996. Since then it has been accounted for large outbreaks of diarrhea globally. In Thailand, prior studies on pandemic and non-pandemic V. parahaemolyticus had mostly been done in the south. The incidence and molecular characterization of pandemic and non-pandemic strains in other parts of Thailand have not been fully characterized. This study examined the incidence of V. parahaemolyticus in seafood samples purchased in Bangkok and collected in eastern Thailand and characterized V. parahaemolyticus isolates. Potential virulence genes, VPaI-7, T3SS2, and biofilm were examined. Antimicrobial resistance (AMR) profiles and AMR genes (ARGs) were determined. Methods: V. parahaemolyticus was isolated from 190 marketed and farmed seafood samples by a culture method and confirmed by polymerase chain reaction (PCR). The incidence of pandemic and non-pandemic V. parahaemolyticus and VPaI-7, T3SS2, and biofilm genes was examined by PCR. AMR profiles were verified by a broth microdilution technique. The presence of ARGs was verified by genome analysis. V. parahaemolyticus characterization was done by multilocus sequence typing (MLST). A phylogenomic tree was built from nucleotide sequences by UBCG2.0 and RAxML softwares. Results: All 50 V. parahaemolyticus isolates including 21 pathogenic and 29 non-pathogenic strains from 190 samples had the toxRS/old sequence, indicating non-pandemic strains. All isolates had biofilm genes (VP0950, VP0952, and VP0962). None carried T3SS2 genes (VP1346 and VP1367), while VPaI-7 gene (VP1321) was seen in two isolates. Antimicrobial susceptibility profiles obtained from 36 V. parahaemolyticus isolates revealed high frequency of resistance to colistin (100%, 36/36) and ampicillin (83%, 30/36), but susceptibility to amoxicillin/clavulanic acid and piperacillin/tazobactam (100%, 36/36). Multidrug resistance (MDR) was seen in 11 isolates (31%, 11/36). Genome analysis revealed ARGs including blaCARB (100%, 36/36), tet(34) (83%, 30/36), tet(35) (42%, 15/36), qnrC (6%, 2/36), dfrA6 (3%, 1/36), and blaCTX-M-55 (3%, 1/36). Phylogenomic and MLST analyses classified 36 V. parahaemolyticus isolates into 5 clades, with 12 known and 13 novel sequence types (STs), suggesting high genetic variation among the isolates. Conclusions: Although none V. parahaemolyticus strains isolated from seafood samples purchased in Bangkok and collected in eastern Thailand were pandemic strains, around one third of isolates were MDR V. parahaemolyticus strains. The presence of resistance genes of the first-line antibiotics for V. parahaemolyticus infection raises a major concern for clinical treatment outcome since these resistance genes could be highly expressed under suitable circumstances.


Assuntos
Antibacterianos , Vibrio parahaemolyticus , Antibacterianos/farmacologia , Vibrio parahaemolyticus/genética , Tipagem de Sequências Multilocus , Incidência , Tailândia/epidemiologia , Farmacorresistência Bacteriana/genética , Variação Genética , Alimentos Marinhos
3.
Antibiotics (Basel) ; 11(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326873

RESUMO

Streptococcus suis is a porcine and zoonotic pathogen that causes severe systemic infection in humans and pigs. The treatment of S. suis infection relies on antibiotics; however, antimicrobial resistance (AMR) is an urgent global problem, pushing research attention on the surveillance of antibiotic-resistant S. suis to the fore. This study investigated the antimicrobial susceptibility of 246 S. suis strains isolated from diseased pigs in Thailand from 2018-2020. The major sources of S. suis strains were lung and brain tissues. PCR-based serotyping demonstrated that the most abundant serotype was serotype 2 or ½, followed by serotypes 29, 8, 9, and 21. To the best of our knowledge, this is the first report describing the distribution of AMR S. suis serotype 29 in diseased pigs. The antimicrobial susceptibility test was performed to determine the minimum inhibitory concentrations of 35 antimicrobial agents. The results showed that important antimicrobial agents for human use, amoxicillin/clavulanic acid, daptomycin, ertapenem, meropenem, and vancomycin, were the most effective drugs. However, a slight decrease in the number of S. suis strains susceptible to amoxicillin/clavulanic acid and vancomycin raised awareness of the AMR problem in the future. The data indicated a tendency of reduced efficacy of available veterinary medicines, including ampicillin, cefepime, cefotaxime, ceftiofur, ceftriaxone, chloramphenicol, florfenicol, gentamicin, penicillin, and tiamulin, for the treatment of S. suis infection, thus emphasizing the importance of the prudent use of antibiotics. The widespread of multidrug-resistant S. suis strains was identified in all serotypes and from different time periods and different regions of the country, confirming the emergence of the AMR problem in the diseased pig-isolated S. suis population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA