Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293159

RESUMO

Analyses of biomedical images often rely on accurate segmentation of structures of interest. Traditional segmentation methods based on thresholding, watershed, fast marching, and level set perform well in high-contrast images containing structures of similar intensities. However, such methods can under-segment or miss entirely low-intensity objects on noisy backgrounds. Machine learning segmentation methods promise superior performance but require large training datasets of labeled images which are difficult to create, particularly in 3D. Here, we propose an algorithm based on the Local Binary Fitting (LBF) level set method, specifically designed to improve the segmentation of low-contrast structures.

2.
Elife ; 132024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334260

RESUMO

Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked ß-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (ogt-1) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in C. elegans, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of ogt-1 mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the ogt-1 mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the ogt-1 mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in ogt-1 animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.


Assuntos
Caenorhabditis elegans , Transdução de Sinais , Animais , Caenorhabditis elegans/fisiologia , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Carbono/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA