Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
BMC Cancer ; 21(1): 596, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030642

RESUMO

BACKGROUND: Phosphorylation of NF-kappaB inhibitor alpha (IκBα) is key to regulation of NF-κB transcription factor activity in the cell. Several sites of IκBα phosphorylation by members of the IκB kinase family have been identified, but phosphorylation of the protein by other kinases remains poorly understood. We investigated a new phosphorylation site on IκBα and identified its biological function in breast cancer cells. METHODS: Previously, we observed that aurora kinase (AURK) binds IκBα in the cell. To identify the domains of IκBα essential for phosphorylation by AURK, we performed kinase assays with a series of IκBα truncation mutants. AURK significantly promoted activation of IκBα at serine 32 but not serine 36; by contrast, IκB kinase (IKK) family proteins activated both of these residues. We also confirmed phosphorylation of IκBα by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and nano-liquid chromatography hybrid quadrupole orbitrap mass spectrometer (nanoLC-MS/MS; Q-Exactive). RESULTS: We identified two novel sites of serine phosphorylation, S63 and S262. Alanine substitution of S63 and S262 (S63A and S262A) of IκBα inhibited proliferation and suppressed p65 transcription activity. In addition, S63A and/or S262A of IκBα regulated apoptotic and necroptotic effects in breast cancer cells. CONCLUSIONS: Phosphorylation of IκBα by AURK at novel sites is related to the apoptosis and necroptosis pathways in breast cancer cells.


Assuntos
Aurora Quinase C/metabolismo , Neoplasias da Mama/patologia , Inibidor de NF-kappaB alfa/metabolismo , Necroptose , Sítios de Ligação/genética , Feminino , Humanos , Células MCF-7 , Mutagênese Sítio-Dirigida , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/isolamento & purificação , NF-kappa B/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
2.
Pharmacol Res ; 152: 104600, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838081

RESUMO

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease in the world. Advanced glycation end products (AGEs) are thought to be involved in the pathogenesis of DN via multifactorial mechanisms including the generation of oxidative stress and overproduction of various growth factors and cytokines. AGEs are heterogeneous cross-linked sugar-derived proteins, and Nε-(carboxymethyl)-lysine (CML)-conjugated BSA is a major component of AGEs. However, the proteins involved in DN induction by CML have never been reported. Herein, we investigated specific protein regulators of AGE-mediated DN via proteomic analysis of streptozotocin (STZ)-induced diabetic mice kidneys. We identified 937, 976, and 870 proteins in control, STZ, and STZ + CML-BSA samples, respectively. Bioinformatics analysis identified several CML-mediated proteins potentially involved in kidney damage, activation of fatty acid oxidation (FAO), and mitochondrial dysfunction. Furthermore, we identified the CML-specific differential protein carnitine palmitoyltransferase 2 (CPT2), related to FAO. To confirm the effect of CPT2 and the CML-mediated mechanism, human renal tubular HK-2 cells were treated with CML-BSA and cpt2 siRNA, and examined for FAO-mediated fibrosis and mitochondrial dysfunction. CML-BSA and CPT2 knockdown induced fibrosis-related gene expression and damage to mitochondrial membrane potential. Moreover, CPT2 overexpression recovered CML-induced fibrosis-related gene expression. Based on these results, a decrease in CML-induced CPT2 expression causes mitochondrial FAO damage, leading to renal fibrosis and DN.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Lisina/análogos & derivados , Mitocôndrias/enzimologia , Animais , Glicemia/análise , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Hemoglobinas Glicadas/análise , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia
3.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291786

RESUMO

Dasatinib is a multi-target kinase inhibitor, whose targets include BCR-ABL, SRC family kinases, and various cancer kinases. The elevated SRC activity in gastric cancer (GC) has prompted the need for the therapeutic application of dasatinib in GC. We observed that the efficacy of dasatinib varied with the GC cell lines. The differential effect of dasatinib was not correlated with the basal SRC activity of each cell line. Moreover, the GC cell lines showing the strong antitumor effects of dasatinib were refractory to other SRC inhibitors, i.e., bosutinib and saracatinib, suggesting that unexpected dasatinib's targets could exist. To profile the targets of dasatinib in GC, we performed activity-based protein profiling (ABPP) via mass spectrometry using a desthiobiotin-ATP probe. We identified 29 and 18 kinases as potential targets in dasatinib-sensitive (SNU-216, MKN-1) and -resistant (SNU-484, SNU-601) cell lines, respectively. The protein-protein interaction mapping of the differential drug targets in dasatinib-sensitive and -resistant GC using the STRING database suggested that dasatinib could target cellular energy homeostasis in the drug-sensitive GC. RNAi screening for identified targets indicated p90RSK could be a novel dasatinib target, which is important for maintaining the viability and motility of GC cells. Further functional validation of dasatinib off-target actions will provide more effective therapeutic options for GC.


Assuntos
Biomarcadores Tumorais/metabolismo , Dasatinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Proteômica , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Dasatinibe/uso terapêutico , Humanos , Terapia de Alvo Molecular , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Espectrometria de Massas em Tandem
4.
Biochem Biophys Res Commun ; 507(1-4): 311-318, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30466782

RESUMO

Gastric cancer (GC) is one of the most common causes of cancer-associated death. However, traditional therapeutic strategies have failed to significantly improve the survival of patient with advanced GC. While KRAS mutations have been found in some patients with gastric cancer, an effective therapy to treat KRAS-driven gastric cancer has not been established yet. To provide a rationale for clinical application of kinase inhibitors targeting RAS pathways, we first determined the sensitivity of GC cell lines harboring KRAS mutations or amplification to RAS pathway inhibitors. We found that MAPK pathway inhibitors (MEKi and ERKi) were more effective than AKT inhibitor, suggesting that KRAS-driven gastric cancer cells are dependent on MAPK pathway for survival. Further, we established a KRAS mutant GC cell line with acquired resistance to MEK inhibitors in order to mimic clinical situation of kinase inhibitor resistance. A comprehensive analysis of tyrosine phosphorylation in receptor tyrosine kinases in combination with small molecule chemical library screening revealed upregulated c-MET phosphorylation in this resistance cell line with elevated sensitivity to c-MET TKI (crizotinib) and PI3K/mTOR dual inhibitor (BEZ235). We also showed that migration and invasion of resistant cells were promoted, and crizotinib and BEZ235 could inhibit this malignant phenotype. Overall, our results indicate that prolonged MAPK pathway inhibition could result in acquired resistance which is associated with increased malignant phenotype in KRAS mutant GC and pharmacological targeting c-MET and PI3K/mTOR could overcome this problem.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Humanos , Imidazóis/farmacologia , Invasividade Neoplásica , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo
5.
J Biol Chem ; 290(15): 9660-73, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25716317

RESUMO

The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Fator 2 Associado a Receptor de TNF/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação/genética , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação
6.
Biochem Biophys Res Commun ; 473(2): 586-92, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27033605

RESUMO

We investigated whether bakuchiol, an analog of resveratrol enhances the apoptosis ability of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in cancer cells. Bakuchiol enhanced expression of cell death receptor (DR) in TRAIL-sensitive and -resistant colon cancer cells in a dose-dependent manner. A combination of bakuchiol with TRAIL significantly inhibited cell growth of TRAIL sensitive HCT116 and TRAIL resistant HT-29 cells. The expression of TRAIL receptors; DR4 and DR5 was significantly increased by treatment of bakuchiol, however, the expression of survival proteins (e.g., cFLIP, survivin, XIAP and Bcl2) was suppressed. Moreover, the expression of apoptosis related proteins such as cleaved caspase-3, -8, -9 and PARP was increased by combination treatment of bakuchiol and TRAIL. Depletion of DR4 or DR5 by small interfering RNA significantly reversed the cell growth inhibitory effects of bakuchiol in HCT116 and HT-29 cells. Pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the bakuchiol induced cell growth inhibitory effects. The collective results suggest that bakuchiol facilitates TRAIL-induced apoptosis in colon cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , Fenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Morte Celular/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação para Baixo/efeitos dos fármacos , Células HT29 , Humanos , Fenóis/isolamento & purificação , Psoralea/química , Regulação para Cima/efeitos dos fármacos
8.
Biomacromolecules ; 17(10): 3234-3243, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27589588

RESUMO

We report a simple and facile strategy for the preparation of multifunctional nanoparticles with programmable properties using self-assembly of precisely designed block amphiphiles in an aqueous solution-state. Versatile, supramolecular nanoplatform for personalized needs, particularly-theranostics, was fabricated by coassembly of peptide amphiphiles (PAs) in aqueous solution, replacing time-consuming and inaccessible chemical synthesis. Fibrils, driven by the assembly of hydrophobic ß-sheet-forming peptide block, were utilized as a nanotemplate for drug loading within their robust core. PAs were tagged with octreotide [somatostatin (SST) analogue] for tumor-targeting or were conjugated with paramagnetic metal ion (Gd3+)-chelating 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for magnetic resonance (MR) imaging. The two PA types were coassembled to integrate each PA function into original fibrillar nanotemplates. The adoption of a bulky target-specific cyclic octreotide and ß-sheet-forming peptide with enhanced hydrophobicity led to a morphological transition from conventional fibrils to helical fibrils. The resulting one-dimensional nanoaggregates allowed the successful intracellular delivery of doxorubicin (DOX) to MCF-7 cancer cells overexpressing SST receptor (SSTR) and MR imaging by enabling high longitudinal (T1) relaxivity of water protons. Correlation between the structural nature of fibrils formed by PA coassembly and contrast efficacy was elucidated. The coassembly of PAs with desirable functions may thus be a useful strategy for the generation of tailor-made biocompatible nanomaterials.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Compostos Heterocíclicos com 1 Anel/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Imageamento por Ressonância Magnética , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Soluções/química , Tensoativos/administração & dosagem , Tensoativos/química , Nanomedicina Teranóstica , Água/química
9.
J Biol Chem ; 289(52): 35868-81, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25359771

RESUMO

Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.


Assuntos
Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Diferenciação Celular , Fusão Celular , Sobrevivência Celular , Células Cultivadas , Regulação para Baixo , Expressão Gênica , Lipopolissacarídeos/farmacologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Osteoclastos/imunologia , Osteoporose/imunologia , Osteoporose/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Transdução de Sinais
10.
Arch Toxicol ; 89(11): 2039-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25199686

RESUMO

Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenebismet-hylene) is correlated with endocrine disruption, reproductive, and immune dysfunctions. Recently, endosulfan was shown to have an effect on inflammatory pathways, but its influence on cyclooxygenase-2(COX-2) expression is unclear. This study investigated the effects of COX-2 and molecular mechanisms by endosulfan in murine macrophage RAW 264.7 cells. Endosulfan significantly induced COX-2 protein and mRNA levels, as well as COX-2 promoter-driven luciferase activity and the production of prostaglandin E2, a major COX-2 metabolite. Transfection experiments with several human COX-2 promoter constructs revealed that endosulfan activated NF-κB, C/EBP, AP-1, and CREB. Moreover, Akt and mitogen-activated protein kinases (MAPK) were significantly activated by endosulfan. Moreover, endosulfan increased production of the ROS and the ROS-producing NAPDH-oxidase (NOX) family oxidases, NOX2, and NOX3. Endosulfan-induced Akt/MAPK pathways and COX-2 expression were attenuated by DPI, a specific NOX inhibitor, and the ROS scavenger N-acetylcysteine. These results demonstrate that endosulfan induces COX-2 expression via NADPH oxidase, ROS, and Akt/MAPK pathways. These findings provide further insight into the signal transduction pathways involved in the inflammatory effects of endosulfan.


Assuntos
Ciclo-Oxigenase 2/genética , Endossulfano/toxicidade , Macrófagos/efeitos dos fármacos , NADPH Oxidases/metabolismo , Acetilcisteína/farmacologia , Animais , Linhagem Celular , Dinoprostona/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
11.
Int J Mol Sci ; 16(5): 9167-95, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25915030

RESUMO

The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (≥1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe-S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments.


Assuntos
Hidrogênio/metabolismo , Proteoma , Proteômica , Enxofre/metabolismo , Thermococcus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Dióxido de Carbono/metabolismo , Expressão Gênica , Regulação da Expressão Gênica em Archaea , Glicosilação , Lipídeos/biossíntese , Oxirredução , Transporte Proteico , Proteólise , Proteômica/métodos , Thermococcus/genética
12.
Biochem Biophys Res Commun ; 450(1): 129-34, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24866247

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising agent for medical applications because it induces apoptosis selectively in a variety of cancer cells without toxicity to normal human cells. However, its therapeutic potential has been limited by the existence of several cancer cells with TRAIL resistance. TRAIL resistance results from a variety of mechanisms, which occur at various points in the cellular signaling pathways. In this study, we demonstrate that ALS2CR7 (CDK15) can mediate resistance to TRAIL. We also demonstrate that cell viability of TRAIL sensitive HCT116 and MDA-MB-231 cells increased after TRAIL treatment in ALS2CR7 transfected cancer cells compared with vector transfected cancer cells. Furthermore, cell viability was decreased by TRAIL treatment after knockdown with ALS2CR7 siRNA in TRAIL resistant HT29 and MCF-7 cells. We also show that the activated form of apoptotic proteins such as caspase-3, -8 and -9 and PARP increased after TRAIL treatment in the control group, but decreased in the ALS2CR7 transfected group. The expression of survival proteins such as bcl2 and survivin in TRAIL sensitive cancer cells increased in the ALS2CR7 transfected group, but decreased in TRAIL resistant cancer cells treated with ALS2CR7 siRNA. Other survival proteins such as FLIP and XIAP were not affected. ALS2CR7 appears to bind with only survivin, and not bcl2. The phospho-survivin (Thr34) critical in drug resistance was increased by transfection with ALS2CR7, but the expression of death receptors such as DR4 and DR5 was not affected. ALS2CR7 did not bind with any of the death receptors in our study. In summary, our results suggest that ALS2CR7 confers TRAIL resistance to cancer cells via phosphorylation of survivin.


Assuntos
Apoptose/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Survivina
13.
Mol Cell Proteomics ; 11(6): M111.015420, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22232491

RESUMO

Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H(2)-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H(2)-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MS(E). A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H(2) production via an electron transport mechanism and that CO(2) produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1.


Assuntos
Proteínas Arqueais/metabolismo , Metabolismo dos Carboidratos , Proteoma/metabolismo , Thermococcus/metabolismo , Adaptação Biológica , Aminoácidos/metabolismo , Monóxido de Carbono/metabolismo , Meios de Cultura , Formiatos/metabolismo , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Redes e Vias Metabólicas , Família Multigênica , Amido/metabolismo , Estresse Fisiológico , Thermococcus/crescimento & desenvolvimento , Thermococcus/fisiologia
14.
Proteomics ; 13(7): 1164-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23349036

RESUMO

Type 2 diabetes mellitus (T2DM) is the most prevalent and serious metabolic disease affecting people worldwide. T2DM results from insulin resistance of the liver, muscle, and adipose tissue. In this study, we used proteomic and bioinformatic methodologies to identify novel hepatic membrane proteins that are related to the development of hepatic insulin resistance, steatosis, and T2DM. Using FT-ICR MS, we identified 95 significantly differentially expressed proteins in the membrane fraction of normal and T2DM db/db mouse liver. These proteins are primarily involved in energy metabolism pathways, molecular transport, and cellular signaling, and many of them have not previously been reported in diabetic studies. Bioinformatic analysis revealed that 16 proteins may be related to the regulation of insulin signaling in the liver. In addition, six proteins are associated with energy stress-induced, nine proteins with inflammatory stress-induced, and 14 proteins with endoplasmic reticulum stress-induced hepatic insulin resistance. Moreover, we identified 19 proteins that may regulate hepatic insulin resistance in a c-Jun amino-terminal kinase-dependent manner. In addition, three proteins, 14-3-3 protein beta (YWHAB), Slc2a4 (GLUT4), and Dlg4 (PSD-95), are discovered by comprehensive bioinformatic analysis, which have correlations with several proteins identified by proteomics approach. The newly identified proteins in T2DM should provide additional insight into the development and pathophysiology of hepatic steatosis and insulin resistance, and they may serve as useful diagnostic markers and/or therapeutic targets for these diseases.


Assuntos
Biologia Computacional/métodos , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metabolismo dos Lipídeos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
15.
Biodegradation ; 24(6): 741-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23361126

RESUMO

Various hydrocarbons have been released into the environment as a result of industrialization. An effective way of removing these materials without further environmental contamination is microbial bioremediation. Mycobacterium gilvum PYR-GCK, a bacteria isolated from a PAH polluted estuary, was studied using comparative shotgun proteomics to gain insight on its molecular activity while using pyrene and glucose as sole carbon and energy sources. Based on annotated genomic information, a confirmation analysis was first performed to confirm its pyrene degradation activity, using gas chromatography-mass spectrometry technology. One dimensional gel electrophoresis and liquid chromatography-mass spectrometry technologies employed in the proteomics analysis revealed the expression of pyrene degrading gene products along with upregulated expression of proteins functioning in the glyoxylate and shikimate pathways, in the pyrene-induced cells. The study also revealed the pathway of pyrene degraded intermediates, via partial gluconeogenesis, into the pentose phosphate pathway to produce precursors for nucleotides and amino acids biosynthesis.


Assuntos
Gluconeogênese/efeitos dos fármacos , Glucose/farmacologia , Glioxilatos/metabolismo , Micobactérias não Tuberculosas/metabolismo , Proteoma/metabolismo , Pirenos/farmacologia , Ácido Chiquímico/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Micobactérias não Tuberculosas/efeitos dos fármacos , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Proteômica
16.
Proteomics ; 12(11): 1815-29, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623148

RESUMO

A decreased production of interferon gamma (IFNG) has been observed in acute schizophrenia. In order to explore the possible relationship between IFNG and schizophrenia, we attempted to analyze the differentially expressed proteins in the brains of interferon-gamma knockout (Ifng-KO) mice. Five upregulated and five downregulated proteins were identified with 2D gels and MALDI-TOF/TOF MS analyses in Ifng-KO mouse brain. Of the identified proteins, we focused on creatine kinase brain (CKB) and triose phosphate isomerase 1 (TPI1). Consistent with the proteomic data, reverse transcriptase-mediated PCR, immunoblotting, and immunohistochemistry analyses confirmed that the levels of gene expressions of Ckb and Tpi1 were downregulated and upregulated, respectively. When we analyzed the genetic polymorphisms of the single nucleotide polymorphisms (SNPs) of their human orthologous genes in a Korean population, the promoter SNPs of CKB and TPI1 were weakly associated with schizophrenia. In addition, IFNG polymorphisms were associated with schizophrenia. These results suggest that IFNG and proteins affected by IFNG may play a role in the pathogenesis of schizophrenia.


Assuntos
Creatina Quinase Forma BB/metabolismo , Interferon gama/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Triose-Fosfato Isomerase/metabolismo , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Creatina Quinase Forma BB/genética , Regulação para Baixo , Feminino , Humanos , Interferon gama/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteoma/análise , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , República da Coreia , Genética Reversa , Triose-Fosfato Isomerase/genética , Regulação para Cima
17.
Int J Mol Sci ; 13(12): 16303-32, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23208372

RESUMO

Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress.


Assuntos
Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Transdução de Sinal Luminoso , Raios Ultravioleta , Criptocromos/fisiologia , Cianobactérias/metabolismo , Estresse Oxidativo/efeitos da radiação , Pterinas/metabolismo , Pterinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação
18.
Int J Mol Sci ; 13(12): 17230-43, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23247284

RESUMO

Type 2 diabetes is a chronic metabolic disease that results from insulin resistance in the liver, muscle, and adipose tissue and relative insulin deficiency. The endoplasmic reticulum (ER) plays a crucial role in the regulation of the cellular response to insulin. Recently, ER stress has been known to reduce the insulin sensitivity of the liver and lead to type 2 diabetes. However, detailed mechanisms of ER stress response that leads to type 2 diabetes remains unknown. To obtain a global view of ER function in type 2 diabetic liver and identify proteins that may be responsible for hepatic ER stress and insulin resistance, we performed proteomics analysis of mouse liver ER using nano UPLC-MSE. A total of 1584 proteins were identified in control C57 and type 2 diabetic db/db mice livers. Comparison of the rER and sER proteomes from normal mice showed that proteins involved in protein synthesis and metabolic process were enriched in the rER, while those associated with transport and cellular homeostasis were localized to the sER. In addition, proteins involved in protein folding and ER stress were found only in the rER. In the livers of db/db mice, however, the functions of the rER and sER were severely disrupted, including the capacity to resolve ER stress. These results provide new insight into the research on hepatic insulin resistance and type 2 diabetes and are suggestive of the potential use of the differentially expressed hepatic ER proteins as biomarkers for hepatic insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Resistência à Insulina , Fígado/metabolismo , Proteoma/metabolismo , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Fígado/patologia , Camundongos , Camundongos Mutantes
19.
Am J Cancer Res ; 12(6): 2798-2816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812067

RESUMO

Endocrine therapy for breast cancer often leads to drug resistance and tumor recurrence; tumor hypoxia is also associated with mortality and tumor relapse. Cytochrome P450 1B1 (CYP1B1) regulates estrogen metabolism in breast cells and is known to be overexpressed in breast cancer tissue. Although the individual association of hypoxia-induced hypoxia-inducible factor-1-alpha (HIF-1α) and CYP1B1 with tumorigenesis is well known, the association between HIF-1α and CYP1B1 leading to tumorigenesis has not been investigated. Here, we investigated the correlation between hypoxia and CYP1B1 expression in breast cancer cells for tumorigenesis-related mechanisms. Hypoxia was induced in the human breast cancer cell lines MCF-7 (Er-positive) and MDA-MB-231 (triple-negative) and the normal breast epithelial cell line MCF10A; these cell lines were then subjected to immunoblotting, transient transfection, luciferase assays, gene silencing using small interfering RNA, polymerase chain reaction analysis, chromatin immunoprecipitation, co-immunoprecipitation, and mammalian two-hybrid assays. Furthermore, immunofluorescence analysis of the tumor microarrays was performed, and the pub2015 and the Cancer Genome Atlas patient datasets were analyzed. HIF-1α expression in response to hypoxia occurred in both normal and breast cancer cells, whereas CYP1B1 was induced only in estrogen receptor α (ERα)-positive breast cancer cells under hypoxia. HIF-1α activated ERα through direct binding and in a ligand-independent manner to promote CYP1B1 expression. Therefore, we suggested the mechanism by which hypoxia and ER-positivity orchestrate breast cancer relapse.

20.
ACS Appl Mater Interfaces ; 14(1): 20-31, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914354

RESUMO

Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 µm diameter and 16 µm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 µm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Pulmonares/metabolismo , Células A549 , Animais , Técnicas de Cultura de Células/instrumentação , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Fenômenos Mecânicos , Metabolômica , Camundongos Endogâmicos BALB C , Camundongos Nus , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA