Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Zoo Wildl Med ; 47(3): 797-805, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27691976

RESUMO

According to previous studies in captive cheetah ( Acinonyx jubatus ) populations, one of the most threatening diseases besides amyloidosis, myelopathy, veno occlusive disease, and gastritis, is renal failure. Contrary to captive cheetahs in North America and South Africa, morphological data concerning renal lesions in the cheetah European Endangered Species Program (EEP) are lacking. This study details the histological characterization as well as immunohistochemical and morphometrical analysis of nephropathies in 35 captive cheetahs from the EEP, which were necropsied between 1985 and 2003. Examination of paraffin- and glycolmethacrylate-methylmethacrylate (GMA-MMA) embedded kidney samples by light microscopy revealed glomerulonephritis in 91%, with a high prevalence for glomerulosclerosis and glomerulonephritis with the histologic pattern of membranous glomerulonephritis (77%). Besides these predominating glomerulopathies, a wide range of other renal lesions, like acute tubular necrosis, interstitial nephritis, calcinosis, and amyloidosis, were present. Pathological expression of collagen type IV, complement C3, fibronectin, and IgG was demonstrated in the glomeruli of the cheetah kidneys with the use of the avidin-biotin complex method. Morphometrical analysis was performed on GMA-MMA embedded kidney samples to obtain glomerulosclerosis index and glomerulosclerosis incidence.


Assuntos
Acinonyx , Nefropatias/veterinária , Animais , Europa (Continente)/epidemiologia , Feminino , Rim/patologia , Rim/ultraestrutura , Nefropatias/epidemiologia , Masculino , Estudos Retrospectivos
2.
Prev Vet Med ; 85(3-4): 166-86, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18314208

RESUMO

Usutu virus (USUV), a flavivirus of the Japanese encephalitis virus complex, was for the first time detected outside Africa in the region around Vienna (Austria) in 2001 by Weissenböck et al. [Weissenböck, H., Kolodziejek, J., Url, A., Lussy, H., Rebel-Bauder, B., Nowotny, N., 2002. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652-656]. USUV is an arthropod-borne virus (arbovirus) circulating between arthropod vectors (mainly mosquitoes of the Culex pipiens complex) and avian amplification hosts. Infections of mammalian hosts or humans, as observed for the related West Nile virus (WNV), are rare. However, USUV infection leads to a high mortality in birds, especially blackbirds (Turdus merula), and has similar dynamics with the WNV in North America, which, amongst others, caused mortality in American robins (Turdus migratorius). We hypothesized that the transmission of USUV is determined by an interaction of developing proportion of the avian hosts immune and climatic factors affecting the mosquito population. This mechanism is implemented into the present model that simulates the seasonal cycles of mosquito and bird populations as well as USUV cross-infections. Observed monthly climate data are specified for the temperature-dependent development rates of the mosquitoes as well as the temperature-dependent extrinsic-incubation period. Our model reproduced the observed number of dead birds in Austria between 2001 and 2005, including the peaks in the relevant years. The high number of USUV cases in 2003 seems to be a response to the early beginning of the extraordinary hot summer in that year. The predictions indicate that >70% of the bird population acquired immunity, but also that the percentage would drop rapidly within only a couple of years. We estimated annually averaged basic reproduction numbers between R (0)=0.54 (2004) and 1.35 (2003). Finally, extrapolation from our model suggests that only 0.2% of the blackbirds killed by USUV were detected by the Austrian USUV monitoring program [Chvala, S., Bakonyi, T., Bukovsky, C., Meister, T., Brugger, K., Rubel, F., Nowotny, N., Weissenböck, H., 2007. Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003-2005. Vet. Microbiol. 122, 237-245]. These results suggest that the model presented is able to quantitatively describe the process of USUV dynamics.


Assuntos
Doenças das Aves/virologia , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Infecções por Flaviviridae/veterinária , Modelos Biológicos , Passeriformes , Animais , Áustria/epidemiologia , Número Básico de Reprodução , Doenças das Aves/epidemiologia , Doenças das Aves/imunologia , Doenças das Aves/transmissão , Simulação por Computador , Culex/virologia , Surtos de Doenças/veterinária , Vírus da Encefalite Japonesa (Subgrupo)/crescimento & desenvolvimento , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Infecções por Flaviviridae/epidemiologia , Infecções por Flaviviridae/transmissão , Infecções por Flaviviridae/virologia , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA