Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 220: 51-63, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26779817

RESUMO

In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.


Assuntos
Ácido Acético/metabolismo , Bactérias/isolamento & purificação , Biocombustíveis/microbiologia , Ácido Butírico/metabolismo , Propionatos/metabolismo , Animais , Bacillus/genética , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Reatores Biológicos/microbiologia , Bovinos , Clostridium/genética , Primers do DNA , DNA Ribossômico , Fermentação , Genoma Bacteriano , Esterco/microbiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Silagem/microbiologia , Suínos , Zea mays/microbiologia
2.
J Biotechnol ; 232: 50-60, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27165504

RESUMO

The genome sequence of Defluviitoga tunisiensis L3 originating from a thermophilic biogas-production plant was established and recently published as Genome Announcement by our group. The circular chromosome of D. tunisiensis L3 has a size of 2,053,097bp and a mean GC content of 31.38%. To analyze the D. tunisiensis L3 genome sequence in more detail, a phylogenetic analysis of completely sequenced Thermotogae strains based on shared core genes was performed. It appeared that Petrotoga mobilis DSM 10674(T), originally isolated from a North Sea oil-production well, is the closest relative of D. tunisiensis L3. Comparative genome analyses of P. mobilis DSM 10674(T) and D. tunisiensis L3 showed moderate similarities regarding occurrence of orthologous genes. Both genomes share a common set of 1351 core genes. Reconstruction of metabolic pathways important for the biogas production process revealed that the D. tunisiensis L3 genome encodes a large set of genes predicted to facilitate utilization of a variety of complex polysaccharides including cellulose, chitin and xylan. Ethanol, acetate, hydrogen (H2) and carbon dioxide (CO2) were found as possible end-products of the fermentation process. The latter three metabolites are considered to represent substrates for methanogenic Archaea, the key organisms in the final step of the anaerobic digestion process. To determine the degree of relatedness between D. tunisiensis L3 and dominant biogas community members within the thermophilic biogas-production plant, metagenome sequences obtained from the corresponding microbial community were mapped onto the L3 genome sequence. This fragment recruitment revealed that the D. tunisiensis L3 genome is almost completely covered with metagenome sequences featuring high matching accuracy. This result indicates that strains highly related or even identical to the reference strain D. tunisiensis L3 play a dominant role within the community of the thermophilic biogas-production plant.


Assuntos
Bactérias/genética , Biocombustíveis/microbiologia , Genoma Bacteriano/genética , Metagenoma/genética
3.
J Biotechnol ; 203: 17-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25801333

RESUMO

An anaerobic, thermophilic bacterium belonging to the phylum Thermotogae was isolated from a rural, thermophilic biogas plant (54°C) producing methane-rich biogas from maize silage, barley, cattle and pig manure. Here we report the first complete genome sequence of the Defluviitoga tunisiensis strain L3, an isolate from the family Thermotogaceae. The strain L3 encodes several genes predicted to be involved in utilization of a large diversity of complex carbohydrates including cellobiose and xylan for the production of acetate, hydrogen (H2) and carbon dioxide (CO2). The genome sequence of D. tunisiensis L3 provides the basis for biotechnological exploitation of genetic determinants playing an important role in thermophilic fermentation processes utilizing renewable primary products.


Assuntos
Alphaproteobacteria/genética , Genoma Bacteriano , Sequência de Bases , Genes Bacterianos , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA