Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Clin Proteomics ; 20(1): 48, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880620

RESUMO

BACKGROUND: Histones posttranslational modification represent an epigenetic mechanism that regulate gene expression and other cellular processes. Quantitative mass spectrometry used for the absolute quantification of such modifications provides further insight into cellular responses to extracellular insults such as infections or toxins. Methamphetamine (Meth), a drug of abuse, is affecting the overall function of the immune system. In this report, we developed, validated and applied a targeted, MS-based quantification assay to measure changes in histone H3 lysine 14 acetylation (H3K14Ac) during exposure of human primary macrophages to HIV-1 infection and/or Meth. METHODS: The quantification assay was developed and validated to determine H3K14Ac stoichiometry in histones that were isolated from the nuclei of control (CIC) and exposed to Meth before (CIM) or/and after (MIM) HIV-infection human monocyte-derived macrophages (hMDM) of six donors. It was based on LC-MS/MS measurement using multiple reaction monitoring (MRM) acquisition of the unmodified and acetylated form of lysine K14 of histone H3 9KSTGGKAPR17 peptides and the corresponding stable isotope labeled (SIL) heavy peptide standards of the same sequences. The histone samples were propionylated (Poy) pre- and post- trypsin digestion so that the sequences of the monitored peptides were: K[Poy]STGGK[1Ac]APR, K[Poy]STGGK[1Ac]APR-heavy, K[Poy]STGGK[Poy]APR and K[Poy]STGGK[Poy]APR-heavy. The absolute amounts of the acetylated and unmodified peptides were determined by comparing to the abundances of their SIL standards, that were added to the samples in the known concentrations, and, then used for calculation of H3K14Ac stoichiometry in CIC, CIM and MIM hMDM. RESULTS: The assay was characterized by LLOD of 0.106 fmol/µL and 0.204 fmol/µL for unmodified and acetylated H3 9KSTGGKAPR17 peptides, respectively. The LLOQ was 0.5 fmol/µL and the linear range of the assay was from 0.5 to 2500 fmol/µL. The absolute abundances of the quantified peptides varied between the donors and conditions, and so did the H3K14Ac stoichiometry. This was rather attributed to the samples nature itself, as the variability of their triplicate measurements was low. CONCLUSIONS: The developed LC-MS/MS assay enabled absolute quantification of H3K14Ac in exposed to Meth HIV-infected hMDM. It can be further applied determination of this PTM stoichiometry in other studies on human primary macrophages.

2.
J Neurovirol ; 28(1): 99-112, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175539

RESUMO

Macrophages are key elements of the innate immune system. Their HIV-1 infection is a complex process that involves multiple interacting factors and various steps and is further altered by exposure of infected cells to methamphetamine (Meth), a common drug of abuse in people living with HIV. This is reflected by dynamic changes in the intracellular and secreted proteomes of these cells. Quantification of these changes poses a challenge for experimental design and associated analytics. In this study, we measured the effect of Meth on expression of intracellular and secreted galectins-1, -3, and -9 in HIV-1 infected human monocyte-derived macrophages (hMDM) using SWATH-MS, which was further followed by MRM targeted mass spectrometry validation. Cells were exposed to Meth either prior to or after infection. Our results are the first to perform comprehensive quantifications of galectins in primary hMDM cells during HIV-1 infection and Meth exposure a building foundation for future studies on the molecular mechanisms underlying cellular pathology of hMDM resulting from viral infection and a drug of abuse-Meth.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Metanfetamina , Humanos , Macrófagos , Metanfetamina/metabolismo , Metanfetamina/farmacologia
3.
Proteomics ; 21(15): e2100005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051048

RESUMO

HIV-1 infection of macrophages is a multistep and multifactorial process that has been shown to be enhanced by exposure to methamphetamine (Meth). In this study, we sought to identify the underlying mechanisms of this effect by quantifying the effect of Meth on the proteome of HIV-1-infected macrophages using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) approach. The analyses identified several members of the Rab family of proteins as being dysregulated by Meth treatment, which was confirmed by bioinformatic analyses that indicated substantial alteration of vesicular transport pathways. Validation of the SWATH-MS was performed using an MRM based approach, which confirmed that Meth exposure affects expression of the Rab proteins. However, the pattern of expression changes were highly dynamic, and displayed high donor-to-donor variability. Surprisingly a similar phenomenon was observed for Actin. Our results demonstrate that Meth affects vesicular transport pathways, suggesting a possible molecular mechanism underlying its effect on HIV infection hMDM and a potential broader effect of Meth on cellular homeostasis.


Assuntos
Infecções por HIV , HIV-1 , Metanfetamina , Humanos , Macrófagos , Metanfetamina/farmacologia , Proteoma
4.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207930

RESUMO

Jacek Namiesnik, who died at the age of 69, was one of the most influential analytical chemists in Poland at the second half of the 20th century and the first two decades of the 21st century [...].


Assuntos
Técnicas de Química Analítica/métodos , Pesquisadores/história , Toxicologia/métodos , Vinho/análise , História do Século XX , História do Século XXI , Humanos , Polônia
5.
Anal Chem ; 91(14): 9190-9197, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31265257

RESUMO

Macrophages comprise a major component of the human innate immune system that is involved in maintaining homeostasis and responding to infections or other insults. Besides cytokines and chemokines, macrophages presumably influence the surrounding environment by secreting various types of metabolites. Characterization of secreted metabolites under normal and pathological conditions is critical for understanding the complex innate immune system. To investigate the secreted metabolome, we developed a novel workflow consisting of one Reverse Phase (RP) C18 column linked in tandem with a Cogent cholesterol-modified RP C18. This system was used to compare the secreted metabolomes of human monocyte-derived macrophages (hMDM) under normal conditions to those exposed to methamphetamine (Meth). This new experimental approach allowed us to measure 92 metabolites, identify 11 of them as differentially expressed, separate and identify three hydroxymethamphetamine (OHMA) isomers, and identify a new, yet unknown metabolite with a m/z of 192. This study is the first of its kind to address the secreted metabolomic response of hMDM to an insult by Meth. Besides the discovery of novel metabolites secreted by macrophages, we provide a novel methodology to investigate metabolomic profiling.


Assuntos
Macrófagos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Metanfetamina/metabolismo , Cromatografia Líquida , Humanos , Extração Líquido-Líquido , Espectrometria de Massas , Extração em Fase Sólida
6.
EMBO J ; 31(4): 945-58, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22157821

RESUMO

The N-terminus of full-length RAG1, though dispensable for RAG1/2 cleavage activity, is required for efficient V(D)J recombination. This region supports RING E3 ubiquitin ligase activity in vitro, but whether full-length RAG1 functions as a single subunit or a multi-subunit E3 ligase in vivo is unclear. We show the multi-subunit cullin RING E3 ligase complex VprBP/DDB1/Cul4A/Roc1 associates with full-length RAG1 through VprBP. This complex is assembled into RAG protein-DNA complexes, and supports in-vitro ubiquitylation activity that is insensitive to RAG1 RING domain mutations. Conditional B lineage-specific VprBP disruption arrests B-cell development at the pro-B-to-pre-B cell transition, but this block is bypassed by expressing rearranged immunoglobulin transgenes. Mice with a conditional VprBP disruption show modest reduction of D-J(H) rearrangement, whereas V(H)-DJ(H) and V(κ)-J(κ) rearrangements are severely impaired. D-J(H) coding joints from VprBP-insufficent mice show longer junctional nucleotide insertions and a higher mutation frequency in D and J segments than normal. These data suggest full-length RAG1 recruits a cullin RING E3 ligase complex to ubiquitylate an unknown protein(s) to limit error-prone repair during V(D)J recombination.


Assuntos
Linfócitos B/citologia , Proteínas de Transporte/metabolismo , Proteínas de Homeodomínio/metabolismo , Recombinação V(D)J , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Serina-Treonina Quinases , Transgenes
7.
Nanomedicine ; 12(1): 109-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26472049

RESUMO

During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2Rγc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future.


Assuntos
Sulfato de Atazanavir/administração & dosagem , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Nanocápsulas/química , Piridinas/administração & dosagem , Pirróis/administração & dosagem , Animais , Antirretrovirais/administração & dosagem , Terapia Antirretroviral de Alta Atividade/métodos , Quimioterapia Combinada/métodos , Infecções por HIV/diagnóstico , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Camundongos SCID , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Inibidores de Proteínas Quinases/administração & dosagem , Resultado do Tratamento , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
8.
Retrovirology ; 12: 5, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608975

RESUMO

BACKGROUND: Long-acting nanoformulated antiretroviral therapy (nanoART) is designed to improve patient regimen adherence, reduce systemic drug toxicities, and facilitate clearance of human immunodeficiency virus type one (HIV-1) infection. While nanoART establishes drug depots within recycling and late monocyte-macrophage endosomes, whether or not this provides a strategic advantage towards viral elimination has not been elucidated. RESULTS: We applied quantitative SWATH-MS proteomics and cell profiling to nanoparticle atazanavir (nanoATV)-treated and HIV-1 infected human monocyte-derived macrophages (MDM). Native ATV and uninfected cells served as controls. Both HIV-1 and nanoATV engaged endolysosomal trafficking for assembly and depot formation, respectively. Notably, the pathways were deregulated in opposing manners by the virus and the nanoATV, likely by viral clearance. Paired-sample z-scores, of the proteomic data sets, showed up- and down- regulation of Rab-linked endolysosomal proteins. NanoART and native ATV treated uninfected cells showed limited effects. The data was confirmed by Western blot. DAVID and KEGG bioinformatics analyses of proteomic data showed relationships between secretory, mobility and phagocytic cell functions and virus and particle trafficking. CONCLUSIONS: We posit that modulation of endolysosomal pathways by antiretroviral nanoparticles provides a strategic path to combat HIV infection.


Assuntos
Fármacos Anti-HIV/administração & dosagem , HIV-1/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/fisiologia , Macrófagos/virologia , Nanopartículas , Oligopeptídeos/administração & dosagem , Piridinas/administração & dosagem , Fármacos Anti-HIV/farmacologia , Sulfato de Atazanavir , Western Blotting , Células Cultivadas , Biologia Computacional , Preparações de Ação Retardada , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana Lisossomal/genética , Espectrometria de Massas , Oligopeptídeos/farmacologia , Mapas de Interação de Proteínas , Proteômica , Piridinas/farmacologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
9.
Proteome Sci ; 13: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412985

RESUMO

BACKGROUND: Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. METHODS: To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. RESULTS: We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. CONCLUSIONS: This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human macrophages.

10.
Methods ; 70(2-3): 89-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25220915

RESUMO

The importance of Chromatin Immunoprecipitation (ChIP) technology has grown exponentially along with an increased interest in epigenetic regulation. The correlation of transcription factors with histone marks is now well established as the center of epigenetic studies; therefore, precise knowledge about histone marks is critical to unravel their molecular function and to understand their role in biological systems. This knowledge constantly accumulates and is provided openly in the expanding hubs of information such as the USCS Genome Browser. Nevertheless, as we gain more knowledge, we realize that the DNA-protein interactions are not driven by a "one size fits all" rule. Also, the diversity of interactions between DNA, histones, and transcriptional regulators is much bigger than previously considered. Besides a detailed protocol of sample preparation for the ChIP assay from primary human monocyte-derived macrophages (MDM) [an acceptable in vitro model for primary, human macrophage cells], we show that differences between various types of cells exist. Furthermore, we can postulate that such variations exist between transformed macrophage-like cell lines and primary macrophages obtained from healthy volunteers. We found that the most efficient fixation time for MDM is 10min. Finally, to perform multiple analytical assays, we showed that even with thorough methodology, the yield of material obtained from primary cells is the major challenge.


Assuntos
Imunoprecipitação da Cromatina/métodos , Macrófagos , Técnicas de Cultura de Células , Epigenômica/métodos , Humanos , Reação em Cadeia da Polimerase , Software , Sonicação
11.
J Proteome Res ; 13(4): 2109-19, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24564501

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection remains a worldwide epidemic, and innovative therapies to combat the virus are needed. Developing a host-oriented antiviral strategy capable of targeting the biomolecules that are directly or indirectly required for viral replication may provide advantages over traditional virus-centric approaches. We used quantitative proteomics by SWATH-MS in conjunction with bioinformatic analyses to identify host proteins, with an emphasis on nucleic acid binding and regulatory proteins, which could serve as candidates in the development of host-oriented antiretroviral strategies. Using SWATH-MS, we identified and quantified the expression of 3608 proteins in uninfected and HIV-1-infected monocyte-derived macrophages. Of these 3608 proteins, 420 were significantly altered upon HIV-1 infection. Bioinformatic analyses revealed functional enrichment for RNA binding and processing as well as transcription regulation. Our findings highlight a novel subset of proteins and processes that are involved in the host response to HIV-1 infection. In addition, we provide an original and transparent methodology for the analysis of label-free quantitative proteomics data generated by SWATH-MS that can be readily adapted to other biological systems.


Assuntos
Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Células Cultivadas , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Espectrometria de Massas , Mapas de Interação de Proteínas , Proteoma/análise , Proteínas de Ligação a RNA/análise , Fatores de Transcrição/análise
12.
J Proteome Res ; 12(2): 559-72, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23282062

RESUMO

After entry into the cell, the early steps of the human immunodeficiency virus type 1 (HIV-1) replication cycle are mediated by two functionally distinct nucleoprotein complexes, the reverse transcription complex (RTC) and preintegration complex (PIC). These two unique viral complexes are responsible for the conversion of the single-stranded RNA genome into double-stranded DNA, transport of the DNA into the nucleus, and integration of the viral DNA into the host cell chromosome. Prior biochemical analyses suggest that these complexes are large and contain multiple undiscovered host cell factors. In this study, functional HIV-1 RTCs and PICs were partially purified by velocity gradient centrifugation and fractionation, concentrated, trypsin digested, and analyzed by LC-MS/MS. A total of seven parallel infected and control biological replicates were completed. Database searches were performed with Proteome Discoverer and a comparison of the HIV-1 samples to parallel uninfected control samples was used to identify unique cellular factors. The analysis produced a total data set of 11055 proteins. Several previously characterized HIV-1 factors were identified, including XRCC6, TFRC, and HSP70. The presence of XRCC6 was confirmed in infected fractions and shown to be associated with HIV-1 DNA by immunoprecipitation-PCR experiments. Overall, the analysis identified 94 proteins unique in the infected fractions and 121 proteins unique to the control fractions with ≥ 2 protein assignments. An additional 54 and 52 were classified as enriched in the infected and control samples, respectively, based on a 3-fold difference in total Proteome Discoverer probability score. The differential expression of several candidate proteins was validated by Western blot analysis. This study contributes additional novel candidate proteins to the growing published bioinformatic data sets of proteins that contribute to HIV-1 replication.


Assuntos
Núcleo Celular/virologia , DNA Viral/genética , HIV-1/genética , Linfócitos/virologia , Nucleoproteínas/genética , Proteoma/genética , Proteínas Virais/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrifugação com Gradiente de Concentração , Cromatografia Líquida , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , HIV-1/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Autoantígeno Ku , Linfócitos/metabolismo , Nucleoproteínas/metabolismo , Ligação Proteica , Proteoma/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Transcrição Reversa , Espectrometria de Massas em Tandem , Proteínas Virais/metabolismo , Integração Viral
13.
J Proteome Res ; 12(10): 4607-11, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23991718

RESUMO

Mass spectrometers equipped with ion trap analyzers have been significantly improved due to their high performance and wide application area accompanying the low costs of purchase. Despite several advantages, such as reasonable resolution at low cost, high sensitivity, and capability for multistage analysis, ion traps have an important drawback: low mass cutoff during tandem mass spectrometry analysis MS(n). Although the low mass cutoff associated with the ion trap does not seriously obstruct peptide identification, it may cause a serious problem in identification of small molecules (posttranslational modifications, e.g., glycan structures) and quantification of peptides with multiplexed isobaric tag reagents. The presented approach offers the possibility to use isobaric tags for relative and absolute quantification labeling (iTRAQ) for quantitative, proteomic analysis using typical, widely available ion trap devices and manufacturer's software. We have performed series of analyses of standard protein labeled with isobaric tags in various concentration ratios to prove quantitative capabilities of this approach.


Assuntos
Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Peso Molecular , Fragmentos de Peptídeos/química , Proteólise , Proteômica , Padrões de Referência , Soroalbumina Bovina/química , Espectrometria de Massas em Tandem/normas , Tripsina/química
14.
Mol Microbiol ; 85(2): 345-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22690807

RESUMO

Hfq is an RNA-binding protein that functions in post-transcriptional gene regulation by mediating interactions between mRNAs and small regulatory RNAs (sRNAs). Two proteins encoded by BAB1_1794 and BAB2_0612 are highly over-produced in a Brucella abortus hfq mutant compared with the parental strain, and recently, expression of orthologues of these proteins in Agrobacterium tumefaciens was shown to be regulated by two sRNAs, called AbcR1 and AbcR2. Orthologous sRNAs (likewise designated AbcR1 and AbcR2) have been identified in B. abortus 2308. In Brucella, abcR1 and abcR2 single mutants are not defective in their ability to survive in cultured murine macrophages, but an abcR1 abcR2 double mutant exhibits significant attenuation in macrophages. Additionally, the abcR1 abcR2 double mutant displays significant attenuation in a mouse model of chronic Brucella infection. Quantitative proteomics and microarray analyses revealed that the AbcR sRNAs predominantly regulate genes predicted to be involved in amino acid and polyamine transport and metabolism, and Northern blot analyses indicate that the AbcR sRNAs accelerate the degradation of the target mRNAs. In an Escherichia coli two-plasmid reporter system, overexpression of either AbcR1 or AbcR2 was sufficient for regulation of target mRNAs, indicating that the AbcR sRNAs from B. abortus 2308 perform redundant regulatory functions.


Assuntos
Brucella abortus/genética , Brucella abortus/patogenicidade , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Interferente Pequeno/genética , Fatores de Virulência/biossíntese , Animais , Proteínas de Bactérias/análise , Northern Blotting , Brucelose/microbiologia , Brucelose/patologia , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Macrófagos/microbiologia , Camundongos , Análise em Microsséries , Viabilidade Microbiana , Proteoma/análise , Virulência
15.
Anal Biochem ; 438(1): 67-72, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23545193

RESUMO

Pressure-assisted digestion of proteins, also known as pressure cycling technology (PCT), using a Barocycler NEP 2320 was compared with the conventional method using atmospheric pressure. Our objective was to demonstrate that PCT provides more controlled enzymatic digestion of proteins than prolonged digestion at atmospheric pressure ranging from 18 to 24 h. More controlled digestion would be beneficial for studies of highly posttranslationally modified protein such as histones. For the comparison of these two techniques, recombinant and native histone H4 were used as model proteins. PCT was optimized for pressure and time, and it was found to be most effective at 15 kpsi for 120 min of incubation. In conclusion, the PCT method was found to be much faster than using atmospheric pressure. PCT was also found to allow for unambiguous control of digestion parameters and to provide a high yield of sequence coverage compared with atmospheric pressure.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Pressão , Proteômica/métodos , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Quimotripsina/metabolismo , Histonas/metabolismo , Humanos , Dados de Sequência Molecular
16.
J Proteome Res ; 11(7): 3774-81, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22594965

RESUMO

Methods for isobaric tagging of peptides, iTRAQ or TMT, are commonly used platforms in mass spectrometry based quantitative proteomics. These two methods are very often used to quantitate proteins in complex samples, e.g., serum/plasma or CSF supporting biomarker discovery studies. The success of these studies depends on multiple factors, including the accuracy of ratios of reporter ions reflecting quantitative changes of proteins. Because reporter ions are generated during peptide fragmentation, the differences of chemical structure of iTRAQ balance groups may have an effect on how efficiently these groups are fragmented and thus how differences in protein expression will be measured. Because 4-plex and 8-plex iTRAQ reagents do have different structures of balanced groups, it has been postulated that indeed differences in protein identification and quantitation exist between these two reagents. In this study we controlled the ratios of tagged samples and compared quantitation of proteins using 4-plex versus 8-plex reagents in the context of a highly complex sample of human plasma using ABSciex 4800 MALDI-TOF/TOF mass spectrometer and ProteinPilot 4.0 software. We observed that 8-plex tagging provides more consistent ratios than 4-plex without compromising protein identification, thus allowing investigation of eight experimental conditions in one analytical experiment.


Assuntos
Proteínas Sanguíneas/química , Proteoma/química , Coloração e Rotulagem , Proteínas Sanguíneas/metabolismo , Humanos , Fragmentos de Peptídeos/química , Proteólise , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
17.
Anal Biochem ; 421(2): 712-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22226790

RESUMO

Among many methods used to investigate protein/protein interactions, chemical cross-linking combined with mass spectrometry remains a vital experimental approach. Mapping peptides modified by cross-linker provides clues about proteins' interacting domains. One complication is that such modification may result from intra- but not intermolecular interactions. Therefore, for overall data interpretation, a combination of results from various platforms is necessary. It is postulated that the secretory isoform of gelsolin regulates several biological processes through interactions with proteins such as actin, fibronectin, vitamin D-binding protein, and unidentified receptors on the surface of eukaryotes; it also has been shown to self-assemble eventually leading to the formation of homo-multimers. As such, it is an excellent model for this study. We used four cross-linkers with arm length ranging from 7.7 to 21.7Å and MALDI-TOF/TOF mass spectrometry as the analytical platform. Results of this study show that MALDI-based mass spectrometry generates high quality data to show lysine residues modified by cross-linkers and combined with existing data based on crystallography (Protein Data Bank, PDB) can be used to discriminate between inter- and intramolecular linking.


Assuntos
Gelsolina/química , Domínios e Motivos de Interação entre Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/química , Gelsolina/sangue , Humanos , Dados de Sequência Molecular , Mapas de Interação de Proteínas
18.
J Proteome Res ; 10(6): 2852-62, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21500866

RESUMO

Dynamic interactions between human immunodeficiency virus-1 (HIV-1) and the macrophage govern the tempo of viral dissemination and replication in its human host. HIV-1 affects macrophage phenotype, and the macrophage, in turn, can modulate the viral life cycle. While these processes are linked to host-cell function and survival, the precise intracellular pathways involved are incompletely understood. To elucidate such dynamic virus-cell events, we employed pulsed stable isotope labeling of amino acids in cell culture. Alterations in de novo protein synthesis of HIV-1 infected human monocyte-derived macrophages (MDM) were examined after 3, 5, and 7 days of viral infection. Synthesis rates of cellular metabolic, regulatory, and DNA packaging activities were decreased, whereas, those affecting antigen presentation (major histocompatibility complex I and II) and interferon-induced antiviral activities were increased. Interestingly, enrichment of proteins linked to chromatin assembly or disassembly, DNA packaging, and nucleosome assembly were identified that paralleled virus-induced cytopathology and replication. We conclude that HIV-1 regulates a range of host MDM proteins that affect its survival and abilities to contain infection.


Assuntos
Aminoácidos/metabolismo , HIV-1/fisiologia , Macrófagos/virologia , Monócitos/citologia , Técnicas de Cultura de Células , Células Cultivadas , Regulação da Expressão Gênica , Proteína do Núcleo p24 do HIV/genética , Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/genética , Humanos , Interferons/metabolismo , Marcação por Isótopo , Macrófagos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais , Fatores de Tempo
19.
Curr Neuropharmacol ; 19(12): 2067-2076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33913404

RESUMO

The use of methamphetamine (Meth) as a drug of abuse is on the rise worldwide. Besides its effect on the function of the brain, Meth has detrimental effects on how the immune system functions. As documented in the literature, various experimental models (cellular, animal, mice, and non-human primates) have been used that have contributed to the overall knowledge about immune system impairments from Meth exposure. It has to be noted that while Meth is used in very few treatments, it affects a broad range of biological mechanisms, not only immune regulation, in a negative manner. Undoubtfully, the effect of Meth is highly complex; moreover, the initial molecular triggers remain unknown. The analyses of available literature suggest that the effect of Meth is not prompted by one underlying mechanism. Although the effect of Meth might be either acute or long-lasting, the overall effect is negative. Further advancement of our knowledge on Meth's specific actions will require systematic experimental approaches using all available models. In addition, bioinformatic analyses are necessary to build a comprehensive model as a needed tool to fill the gap in knowledge.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Animais , Encéfalo , Sistema Imunitário , Camundongos
20.
Proteomics Clin Appl ; 15(1): e2000040, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978881

RESUMO

The accelerated development of technology over the last three decades has driven biological sciences to high-throughput profiling experiments, now broadly referred to as systems biology. The unprecedented improvement of analytical instrumentation has opened new avenues for more complex experimental designs and expands the knowledge in genomics, proteomics, and other omics fields. Despite the collective efforts of hundreds of researchers, gleaning all the expected information from omics experiments is still quite far. This paper summarizes what has been learned from high-throughput proteomics studies thus far, and what is believed should be done to reveal even more valuable information from such studies. It is drawn from the background in using proteomics to study human immunodeficiency virus 1 infection of macrophages and/or T cells, but it is believed that some conclusions will be more broadly applicable.


Assuntos
Infecções por HIV , Proteômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA