Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(20): 9825-9830, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036649

RESUMO

Technologies surrounding utilization of cellulosic materials have been integral to human society for millennia. In many materials, controlled introduction of defects provides a means to tailor properties, introduce reactivity, and modulate functionality for various applications. The importance of defects in defining the behavior of cellulose is becoming increasingly recognized. However, fully exploiting defects in cellulose to benefit biobased materials and conversion applications will require an improved understanding of the mechanisms of defect induction and corresponding molecular-level consequences. We have identified a fundamental relationship between the macromolecular structure and mechanical behavior of cellulose nanofibrils whereby molecular defects may be induced when the fibrils are subjected to bending stress exceeding a certain threshold. By nanomanipulation, imaging, and molecular modeling, we demonstrate that cellulose nanofibrils tend to form kink defects in response to bending stress, and that these macromolecular features are often accompanied by breakages in the glucan chains. Direct observation of deformed cellulose fibrils following partial enzymatic digestion reveals that processive cellulases exploit these defects as initiation sites for hydrolysis. Collectively, our findings provide a refined understanding of the interplay between the structure, mechanics, and reactivity of cellulose assemblies.


Assuntos
Celulose/química , Nanoestruturas
2.
Nature ; 509(7500): 376-80, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24670657

RESUMO

Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Lignina/metabolismo , Complexo Mediador/genética , Mutação/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocombustíveis , Biomassa , Parede Celular/química , Parede Celular/metabolismo , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lignina/biossíntese , Lignina/química , Complexo Mediador/química , Complexo Mediador/deficiência , Complexo Mediador/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transcrição Gênica/genética
3.
Molecules ; 25(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245102

RESUMO

Ferrous ion co-catalyst enhancement of dilute-acid (DA) pretreatment of biomass is a promising technology for increasing the release of sugars from recalcitrant lignocellulosic biomass. However, due to the reductive status of ferrous ion and its susceptibility to oxidation with exposure to atmosphere, its effective application presumably requires anaerobic aqueous conditions created by nitrogen gas-purging, which adds extra costs. The objective of this study was to assess the effectiveness of oxidative iron ion, (i.e., ferric ion) as a co-catalyst in DA pretreatment of biomass, using an anaerobic chamber to strictly control exposure to oxygen during setup and post-pretreatment analyses. Remarkably, the ferric ions were found to be as efficient as ferrous ions in enhancing sugar release during DA pretreatment of biomass, which may be attributed to the observation that a major portion of the initial ferric ions were converted to ferrous during pretreatment. Furthermore, the detection of hydrogen peroxide in the liquors after DA/Fe ion pretreatment suggests that Fenton reaction chemistry was likely involved in DA/Fe ion pretreatments of biomass, contributing to the observed ferric and ferrous interchanges during pretreatment. These results help define the extent and specification requirements for applying iron ions as co-catalysts in DA pretreatments of biomass.


Assuntos
Biomassa , Compostos Férricos/química , Compostos Ferrosos/química , Lignina/química , Aerobiose , Anaerobiose , Catálise , Peróxido de Hidrogênio/química , Hidrólise , Ferro , Oxirredução , Oxigênio
4.
Plant Cell ; 27(8): 2195-209, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26265762

RESUMO

Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content.


Assuntos
Oxirredutases do Álcool/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Lignina/biossíntese , Mutação , Oxirredutases do Álcool/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cinamatos/química , Cinamatos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lignina/química , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Plantas Geneticamente Modificadas
5.
Chem Rev ; 116(16): 9305-74, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27459699

RESUMO

With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Química Verde , Madeira/química , Celulose/química , Equipamentos e Provisões Elétricas , Hidrogéis , Dispositivos Lab-On-A-Chip , Lignina/química , Membranas Artificiais , Nanofibras/química , Papel , Polissacarídeos/química , Porosidade , Energia Renovável
6.
Nano Lett ; 17(12): 7897-7907, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29161046

RESUMO

A novel renewable cathode made from earth abundant, low-cost materials can contribute to the intermittent storage needs of renewable energy-based society. In this work, we report for the first-time tannin from Nature as a cathode material. Our approach exploits the charge storage mechanism of the redox active quinone moiety. Tannins extracted from tree bark using environmental friendly aqueous solvents have the highest phenol content (5.56 mol g-1) among all the natural phenolic biopolymers, 5000 times higher than lignin. Tannins coupled with a conductive polymer polypyrrole acquire high specific capacitance values of 370 F g-1 at 0.5 A g-1 as well as excellent rate performance of 196 F g-1 at 25 A g-1. Additionally, we employed carbonized wood as an electrode substrate to produce a sustainable electrochemical device with dramatically improved performance compared to conventional devices. The high surface area provided by the well-aligned, cellular porosity of wood-derived substrate combined with the high mobility of ions and electrons in the carbonized cell walls and deposited tannin can achieve an areal capacitance of 4.6 F cm-2 at 1 mA cm-2, which is 1.5 times higher than activated wood carbon.

7.
J Phys Chem A ; 121(29): 5475-5486, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28678503

RESUMO

Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, the chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO• radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. These findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.

8.
Plant Physiol ; 164(2): 584-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24381065

RESUMO

The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Dexametasona/farmacologia , Mutação/genética , Epiderme Vegetal/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Propanóis/metabolismo , Ácido Salicílico/metabolismo , Metabolismo Secundário/genética , Solubilidade , Fatores de Tempo
9.
ACS Sustain Chem Eng ; 12(2): 666-679, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38239432

RESUMO

Improving the odds and pace of successful biomass and waste carbon utilization technology scale-up is crucial to decarbonizing key industries such as aviation and materials within timelines required to meet global climate goals. In this perspective, we review deficiencies commonly encountered during scale-up to show that many nascent technology developers place too much focus on simply demonstrating that technologies work in progressively larger units ("profit") without expending enough up-front research effort to identify and derisk roadblocks to commercialization (collecting "information") to inform the design of these units. We combine this conclusion with economic and timeline data collected from technology scale-up and piloting operations at the National Renewable Energy Laboratory (NREL) to motivate a more scientific, risk-minimized approach to biomass and waste carbon upgrading scale-up. Our proposed approach emphasizes maximizing information collection in the smallest, most agile, and least expensive experimental setups possible, emulating the mentality embraced by R&D across the petrochemical industry. Key points are supported by examples of successful and unsuccessful scale-up efforts undertaken at NREL and elsewhere. We close by showing that the U.S. national laboratory system is uniquely well equipped to serve as a hub to facilitate effective scale-up of promising biomass and waste carbon upgrading technologies.

10.
Sci Adv ; 10(1): eadi7965, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170770

RESUMO

Plant secondary cell walls (SCWs) are composed of a heterogeneous interplay of three major biopolymers: cellulose, hemicelluloses, and lignin. Details regarding specific intermolecular interactions and higher-order architecture of the SCW superstructure remain ambiguous. Here, we use solid-state nuclear magnetic resonance (ssNMR) measurements to infer refined details about the structural configuration, intermolecular interactions, and relative proximity of all three major biopolymers within air-dried Populus wood. To enhance the utility of these findings and enable evaluation of hypotheses in a physics-based environment in silico, the NMR observables are articulated into an atomistic, macromolecular model for biopolymer assemblies within the plant SCW. Through molecular dynamics simulation, we quantitatively evaluate several variations of atomistic models to determine structural details that are corroborated by ssNMR measurements.


Assuntos
Populus , Celulose , Espectroscopia de Ressonância Magnética , Biopolímeros , Plantas , Parede Celular
12.
Cell Surf ; 9: 100105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37063382

RESUMO

Secondary plant cell walls are composed of carbohydrate and lignin polymers, and collectively represent a significant renewable resource. Leveraging these resources depends in part on a mechanistic understanding for diffusive processes within plant cell walls. Common wood protection treatments and biomass conversion processes to create biorefinery feedstocks feature ion or solvent diffusion within the cell wall. X-ray fluorescence microscopy experiments have determined that ionic diffusion rates are dependent on cell wall hydration as well as the ionic species through non-linear relationships. In this work, we use classical molecular dynamics simulations to map the diffusion behavior of different plant cell wall components (cellulose, hemicellulose, lignin), ions (Na+, K+, Cu2+, Cl-) and water within a model for an intact plant cell wall at various hydration states (3-30 wt% water). From these simulations, we analyze the contacts between different plant cell wall components with each other and their interaction with the ions. Generally, diffusion increases with increasing hydration, with lignin and hemicellulose components increasing diffusion by an order of magnitude over the tested hydration range. Ion diffusion depends on charge. Positively charged cations preferentially interact with hemicellulose components, which include negatively charged carboxylates. As a result, positive ions diffuse more slowly than negatively charged ions. Measured diffusion coefficients are largely observed to best fit piecewise linear trends, with an inflection point between 10 and 15% hydration. These observations shed light onto the molecular mechanisms for diffusive processes within secondary plant cell walls at atomic resolution.

13.
ACS Appl Mater Interfaces ; 14(39): 44922-44932, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129845

RESUMO

Cellulose and chitin are the two most abundant naturally produced biopolymers and are being extensively studied as candidates for renewable oxygen barrier films used in packaging. It has been shown that bilayers formed from cellulose nanocrystals (CNCs) and chitin nanofibers (ChNFs) exhibit oxygen barrier properties similar to polyethylene terephthalate (PET). However, this prior work explored only coating each layer individually in sequence through techniques such as spray coating. Here, we demonstrate the viability of dual-layer slot die coating of CNC/ChNF bilayers onto cellulose acetate (CA) substrates. The dual-layer slot die method enables significantly lower oxygen permeability versus spray coating while using a roll-to-roll system that applies the bilayer in a single pass. This work discusses suspension properties, wetting, and drying conditions required to achieve well-controlled ChNF/CNC bilayers. Spray-coated bilayer films were on average 25% thinner than the dual-layer bilayer film; however, the thickness-normalized oxygen permeability (OP) of the dual-layer-coated ChNF/CNC bilayer film on CA was 20 times better than that of the spray-coated bilayers. It has been shown that ChNF contributes to the wetting and barrier properties. Values of OP for the slot die-coated bilayers under optimized drying conditions were as low as 1.2 cm3·µm·m-2·d-1·kPa-1, corresponding to a normalized oxygen transmission rate of 0.32 cm3·m-2·d-1 at 23 °C and 50% relative humidity. It is also noted that the adhesive properties of the dual-layer coating are also improved when films are air-dried and that ChNF contributes to the wetting and barrier properties.

14.
Nanotechnology ; 22(29): 295302, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21677370

RESUMO

We demonstrate large area two-dimensional arrays of patterned nanoporous gold for use as easy-to-fabricate, cost-effective, and stable surface enhanced Raman scattering (SERS) templates. Using a simple one-step direct imprinting process, subwavelength nanoporous gold (NPG) gratings are defined by densifying appropriate regions of a NPG film. Both the densified NPG and the two-dimensional grating pattern are shown to contribute to the SERS enhancement. The resulting substrates exhibit uniform SERS enhancement factors of at least 10(7) for a monolayer of adsorbed benzenethiol molecules.

15.
J Phys Chem A ; 115(15): 3326-34, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21449567

RESUMO

Photosystem I (PSI), a photoactive protein complex that participates in the light reactions of natural photosynthesis, can exhibit photocatalytic capabilities when incorporated to electrochemical systems. Here we present a simulation for the photoelectrochemical behavior of an electrode modified with a monolayer of Photosystem I complexes during photochronoamperometric experiments in which the electrode is exposed to periods of darkness and irradiation. A kinetic model is derived from conservation statements for the various oxidation states of the reaction centers of PSI complexes and electrochemical mediators within the system. The kinetic parameters that dictate the performance of the simulation are extracted from experimental data and the resulting simulation is capable of predicting the photochronoamperometric behavior of the system over a range of overpotentials. The model is used to investigate the various contributions to the photocurrent production of the system as well as the effects of the orientation of PSI complexes adsorbed to the electrode surface.


Assuntos
Membranas Artificiais , Modelos Químicos , Complexo de Proteína do Fotossistema I/química , Biocatálise , Eletroquímica , Eletrodos , Cinética , Modelos Moleculares , Fotoquímica , Complexo de Proteína do Fotossistema I/metabolismo , Propriedades de Superfície
16.
Biotechnol Biofuels ; 14(1): 114, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957955

RESUMO

Plant-biomass-based nanomaterials have attracted great interest recently for their potential to replace petroleum-sourced polymeric materials for sustained economic development. However, challenges associated with sustainable production of lignocellulosic nanoscale polymeric materials (NPMs) need to be addressed. Producing materials from lignocellulosic biomass is a value-added proposition compared with fuel-centric approach. This report focuses on recent progress made in understanding NPMs-specifically lignin nanoparticles (LNPs) and cellulosic nanomaterials (CNMs)-and their sustainable production. Special attention is focused on understanding key issues in nano-level deconstruction of cell walls and utilization of key properties of the resultant NPMs to allow flexibility in production to promote sustainability. Specifically, suitable processes for producing LNPs and their potential for scaled-up production, along with the resultant LNP properties and prospective applications, are discussed. In the case of CNMs, terminologies such as cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) used in the literature are examined. The term cellulose nano-whiskers (CNWs) is used here to describe a class of CNMs that has a morphology similar to CNCs but without specifying its crystallinity, because most applications of CNCs do not need its crystalline characteristic. Additionally, progress in enzymatic processing and drying of NPMs is also summarized. Finally, the report provides some perspective of future research that is likely to result in commercialization of plant-based NPMs.

17.
ChemSusChem ; 13(17): 4495-4509, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246557

RESUMO

Lignin solvolysis from the plant cell wall is the critical first step in lignin depolymerization processes involving whole biomass feedstocks. However, little is known about the coupled reaction kinetics and transport phenomena that govern the effective rates of lignin extraction. Here, we report a validated simulation framework that determines intrinsic, transport-independent kinetic parameters for the solvolysis of lignin, hemicellulose, and cellulose upon incorporation of feedstock characteristics for the methanol-based extraction of poplar as an example fractionation process. Lignin fragment diffusion is predicted to compete on the same time and length scales as reactions of lignin within cell walls and longitudinal pores of typical milled particle sizes, and mass transfer resistances are predicted to dominate the solvolysis of poplar particles that exceed approximately 2 mm in length. Beyond the approximately 2 mm threshold, effectiveness factors are predicted to be below 0.25, which implies that pore diffusion resistances may attenuate observable kinetic rate measurements by at least 75 % in such cases. Thus, researchers are recommended to conduct kinetic evaluations of lignin-first catalysts using biomass particles smaller than approximately 0.2 mm in length to avoid feedstock-specific mass transfer limitations in lignin conversion studies. Overall, this work highlights opportunities to improve lignin solvolysis by genetic engineering and provides actionable kinetic information to guide the design and scale-up of emerging biorefinery strategies.

18.
Front Chem ; 7: 730, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737604

RESUMO

Hierarchically structured porous materials often exhibit advantageous functionality for many applications including catalysts, adsorbents, and filtration systems. In this study, we report a facile approach to achieve hierarchically structured, porous cerium oxide (CeO2) catalyst particles using a templating method based on nanocellulose, a class of renewable, plant-derived nanomaterials. We demonstrate the catalyst performance benefits provided by this templating method in the context of Catalytic Fast Pyrolysis (CFP) which is a promising conversion technology to produce renewable fuel and chemical products from biomass and other types of organic waste. We show that variations in the porous structures imparted by this templating method may be achieved by modifying the content of cellulose nanofibrils, cellulose nanocrystals, and alginate in the templating suspensions. Nitrogen physisorption reveals that nearly 10-fold increases in surface area can be achieved using this method with respect to commercially available cerium oxide powder. Multiscale electron microscopy further verifies that bio-derived templating can alter the morphology of the catalyst nanostructure and tune the distribution of meso- and macro-porosity within the catalyst particles while maintaining CeO2 crystal structure. CFP experiments demonstrate that the templated catalysts display substantially higher activity on a gravimetric basis than their non-templated counterpart, and that variations in the catalyst architecture can impact the distribution of upgraded pyrolysis products. Finally, we demonstrate that the templating method described here may be extended to other materials derived from metal chlorides to achieve 3-dimensional networks of hierarchical porosity.

19.
ACS Nano ; 11(3): 3101-3109, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28267923

RESUMO

Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.


Assuntos
Biocombustíveis , Celulases/metabolismo , Celulose/metabolismo , Firmicutes/enzimologia , Enzimas Multifuncionais/metabolismo , Trichoderma/enzimologia , Firmicutes/crescimento & desenvolvimento , Hidrólise , Tamanho da Partícula , Propriedades de Superfície
20.
Curr Opin Chem Biol ; 41: 61-70, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29100023

RESUMO

Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy.


Assuntos
Ecossistema , Lignina/metabolismo , Animais , Parede Celular/metabolismo , Parede Celular/microbiologia , Humanos , Hidrólise , Oxirredução , Células Vegetais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA