Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurosci ; 43(1): 125-141, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36347621

RESUMO

The human action observation network (AON) encompasses brain areas consistently engaged when we observe other's actions. Although the core nodes of the AON are present from childhood, it is not known to what extent they are sensitive to different action features during development. Because social cognitive abilities continue to mature during adolescence, the AON response to socially-oriented actions, but not to object-related actions, may differ in adolescents and adults. To test this hypothesis, we scanned with functional magnetic resonance imaging (fMRI) male and female typically-developing teenagers (n = 28; 13 females) and adults (n = 25; 14 females) while they passively watched videos of manual actions varying along two dimensions: sociality (i.e., directed toward another person or not) and transitivity (i.e., involving an object or not). We found that action observation recruited the same fronto-parietal and occipito-temporal regions in adults and adolescents. The modulation of voxel-wise activity according to the social or transitive nature of the action was similar in both groups of participants. Multivariate pattern analysis, however, revealed that decoding accuracies in intraparietal sulcus (IPS)/superior parietal lobe (SPL) for both sociality and transitivity were lower for adolescents compared with adults. In addition, in the lateral occipital temporal cortex (LOTC), generalization of decoding across the orthogonal dimension was lower for sociality only in adolescents. These findings indicate that the representation of the content of others' actions, and in particular their social dimension, in the adolescent AON is still not as robust as in adults.SIGNIFICANCE STATEMENT The activity of the action observation network (AON) in the human brain is modulated according to the purpose of the observed action, in particular the extent to which it involves interaction with an object or with another person. How this conceptual representation of actions is implemented during development is largely unknown. Here, using multivoxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data, we discovered that, while the action observation network is in place in adolescence, the fine-grain organization of its posterior regions is less robust than in adults to decode the abstract social dimensions of an action. This finding highlights the late maturation of social processing in the human brain.


Assuntos
Mapeamento Encefálico , Lobo Occipital , Adulto , Humanos , Masculino , Adolescente , Feminino , Criança , Mapeamento Encefálico/métodos , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Lobo Parietal/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
2.
Neuroimage ; 245: 118645, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34687861

RESUMO

Sensorimotor adaptation involves the recalibration of the mapping between motor command and sensory feedback in response to movement errors. Although adaptation operates within individual movements on a trial-to-trial basis, it can also undergo learning when adaptive responses improve over the course of many trials. Brain oscillatory activities related to these "adaptation" and "learning" processes remain unclear. The main reason for this is that previous studies principally focused on the beta band, which confined the outcome message to trial-to-trial adaptation. To provide a wider understanding of adaptive learning, we decoded visuomotor tasks with constant, random or no perturbation from EEG recordings in different bandwidths and brain regions using a multiple kernel learning approach. These different experimental tasks were intended to separate trial-to-trial adaptation from the formation of the new visuomotor mapping across trials. We found changes in EEG power in the post-movement period during the course of the visuomotor-constant rotation task, in particular an increased (i) theta power in prefrontal region, (ii) beta power in supplementary motor area, and (iii) gamma power in motor regions. Classifying the visuomotor task with constant rotation versus those with random or no rotation, we were able to relate power changes in beta band mainly to trial-to-trial adaptation to error while changes in theta band would relate rather to the learning of the new mapping. Altogether, this suggested that there is a tight relationship between modulation of the synchronization of low (theta) and higher (essentially beta) frequency oscillations in prefrontal and sensorimotor regions, respectively, and adaptive learning.


Assuntos
Adaptação Fisiológica/fisiologia , Sincronização Cortical/fisiologia , Eletroencefalografia , Aprendizagem/fisiologia , Aprendizado de Máquina , Córtex Motor/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Movimento/fisiologia , Desempenho Psicomotor
3.
Hum Brain Mapp ; 40(12): 3508-3521, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31077476

RESUMO

Neurofibromatosis Type 1 leads to brain anomalies involving both gray and white matter. The extent and granularity of these anomalies, together with their possible impact on brain activity, is still unknown. In this multicentric cross-sectional study we submitted a sample of 42 typically developing and 38 neurofibromatosis-1 children to a multimodal MRI assessment including T1, diffusion weighted and resting state functional sequences. We used a pipeline involving several features selection steps coupled with multivariate statistical analysis (supporting vector machine) to discriminate between the two groups while having interpretable models. We used MRI indexes measuring macro (gray matter volume) and microstructural (fractional anisotropy, mean diffusivity) characteristics of the brain, as well as indexes of brain activity (fractional amplitude of low frequency fluctuations) and connectivity (local and global correlation) at rest. We found that structural indexes could discriminate between the two groups, with the mean diffusivity leading to performance as high as the combination of all structural indexes combined (accuracy = 0.86), while functional indexes had worse performances. The MRI signature of NF1 brain pathology is a combination of gray and white matter abnormalities, as measured with gray matter volume, fractional anisotropy, and mean diffusivity.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neurofibromatose 1/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Criança , Diagnóstico Diferencial , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Análise Multivariada , Neurofibromatose 1/fisiopatologia , Substância Branca/fisiopatologia
4.
Cereb Cortex ; 27(2): 1285-1296, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733535

RESUMO

Proprioceptive processing is important for appropriate motor control, providing error-feedback and internal representation of movement for adjusting the motor command. Although proprioceptive functioning improves during childhood and adolescence, we still have few clues about how the proprioceptive brain network develops. Here, we investigated developmental changes in the functional organization of this network in early adolescents (n = 18, 12 ± 1 years), late adolescents (n = 18, 15 ± 1), and young adults (n = 18, 32 ± 4), by examining task-evoked univariate activity and patterns of functional connectivity (FC) associated with seeds placed in cortical (supramarginal gyrus) and subcortical (dorsal rostral putamen) regions. We found that although the network is already well established in early adolescence both in terms of topology and functioning principles (e.g., long-distance communication and economy in wiring cost), it is still undergoing refinement during adolescence, including a shift from diffuse to focal FC and a decreased FC strength. This developmental effect was particularly pronounced for fronto-striatal connections. Furthermore, changes in FC features continued beyond adolescence, although to a much lower extent. Altogether, these findings point to a protracted developmental time course for the proprioceptive network, which breaks with the relatively early functional maturation often associated with sensorimotor networks.


Assuntos
Mapeamento Encefálico , Encéfalo/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Adolescente , Adulto , Criança , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
5.
Hum Brain Mapp ; 35(10): 5166-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24798824

RESUMO

The feeling of illusory movement is considered important in the study of human behavior because it is deeply related to motor consciousness. However, the neural basis underlying the illusion of movement remains to be understood. Following optimal vibratory stimulation of muscle tendon, certain subjects experience illusory movements while others do not. In the present fMRI study, we sought to uncover the neural basis of illusory movement awareness by contrasting a posteriori these two types of subjects. Examining fMRI data using leave-one-subject-out general linear models and region of interest analyses, we found that a non-limb-specific associative network, including the opercular part of the right inferior frontal gyrus and the right inferior parietal lobule, was more active in subjects with illusions. On the other hand, levels of activation in other brain areas involved in kinaesthetic processing were rather similar between the two subsamples of subjects. These results suggest that activation of the right inferior frontoparietal areas, once passed a certain threshold, forms the basis of illusory movements. This is consistent with the global neuronal workspace hypothesis that associates conscious processing with surges of frontoparietal activity.


Assuntos
Conscientização/fisiologia , Lobo Frontal/fisiologia , Lateralidade Funcional/fisiologia , Ilusões/fisiologia , Movimento/fisiologia , Rede Nervosa , Lobo Parietal/fisiologia , Adulto , Vias Aferentes/irrigação sanguínea , Vias Aferentes/fisiologia , Feminino , Lobo Frontal/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/inervação , Oxigênio/sangue , Lobo Parietal/irrigação sanguínea , Fatores de Tempo , Vibração
7.
Cortex ; 160: 43-54, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36680923

RESUMO

Developmental dyslexia (DD) and developmental coordination disorder (DCD) are two common neurodevelopmental disorders with a high co-occurrence rate. This led several authors to postulate that the two disorders share, at least partially, similar neural underpinning. However, even though several studies examined brain differences between typically developing (TD) children and children with either DD or DCD, no previous study directly compared DD, DCD and children with both disorders (COM) using neuroimaging. We acquired structural and resting-state functional MRI images of 136 children (TD = 42, DD = 45, DCD = 20, COM = 29). Difference between TD children and the other groups was assessed using univariate analysis of structural indexes including grey and white matter volumes and functional indexes quantifying activity (fraction of the amplitude of the low frequency fluctuations), local and global connectivity. Regional differences in structural and functional brain indexes were then used to train machine learning models to discriminate among DD, DCD and COM and to find the most discriminant regions. While no imaging index alone discriminated between the three groups, grouping grey and white matter volumes (structural model) or activity, local and global connectivity (functional model) made possible to discriminate among the DD, DCD and COM groups. The most important discrimination was obtained using the functional model, with regions in the cerebellum and the temporal lobe being the most discriminant for DCD and DD children, respectively. Results further showed that children with both DD and DCD have subtle but identifiable brain differences that can only be captured using several imaging indexes pertaining to both brain structure and function.


Assuntos
Dislexia , Transtornos das Habilidades Motoras , Criança , Humanos , Transtornos das Habilidades Motoras/epidemiologia , Encéfalo , Neuroimagem Funcional , Comorbidade
8.
Neurobiol Aging ; 131: 196-208, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689017

RESUMO

There is increasing evidence of different subtypes of individuals with mild cognitive impairment (MCI). An important line of research is whether neuropsychologically-defined subtypes have distinct patterns of neurodegeneration and cerebrospinal fluid (CSF) biomarker composition. In our study, we demonstrated that MCI participants of the ADNI database (N = 640) can be discriminated into 3 coherent neuropsychological subgroups. Our clustering approach revealed amnestic MCI, mixed MCI, and cluster-derived normal subgroups. Furthermore, classification modeling revealed that specific predictive features can be used to differentiate amnestic and mixed MCI from cognitively normal (CN) controls: CSF Aß142 concentration for the former and CSF Aß1-42 concentration, tau concentration as well as grey matter atrophy (especially in the temporal and occipital lobes) for the latter. In contrast, participants from the cluster-derived normal subgroup exhibited an identical profile to CN controls in terms of cognitive performance, brain structure, and CSF biomarker levels. Our comprehensive data analytics strategy provides further evidence that multimodal neuropsychological subtyping is both clinically and neurobiologically meaningful.


Assuntos
Disfunção Cognitiva , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral , Encéfalo , Biomarcadores , Disfunção Cognitiva/diagnóstico
9.
J Neuroeng Rehabil ; 9: 8, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22305105

RESUMO

BACKGROUND: Wearing a harness during treadmill walking ensures the subject's safety and is common practice in biomedical engineering research. However, the extent to which such practice influences gait is unknown. This study investigated harness-related changes in gait patterns, as evaluated from lower extremity kinematics during treadmill walking. FINDINGS: Healthy subjects (n = 10) walked on a treadmill at their preferred speed for 3 minutes with and without wearing a harness (LiteGait®, Mobility Research, Inc.). In the former condition, no weight support was provided to the subjects. Lower extremity kinematics was assessed in the sagittal plane from the mean (meanRoM), standard deviation (SDRoM) and coefficient of variation (CoVRoM) of the hip, knee, and ankle ranges of motion (RoM), as well as from the sample entropy (SampEn) and the largest Lyapunov exponent (LyE) of the joints' angles. Wearing the harness increased the meanRoM of the hip, the SDRoM and the CoVRoM of the knee, and the SampEn and the LyE of the ankle. In particular, the harness effect sizes for both the SampEn and the LyE of the ankle were large, likely reflecting a meaningful decline in the neuromuscular stabilizing control of this joint. CONCLUSIONS: Wearing a harness during treadmill walking marginally influences lower extremity kinematics, resulting in more or less subtle changes in certain kinematic variables. However, in cases where differences in gait patterns would be expressed through modifications in these variables, having subjects walk with a harness may mask or reinforce such differences.


Assuntos
Tornozelo/fisiologia , Terapia por Exercício/instrumentação , Marcha/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos/fisiologia , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Postura/fisiologia , Adulto Jovem
10.
J Neurodev Disord ; 14(1): 15, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232382

RESUMO

INTRODUCTION: Neurofibromatosis type 1 (NF1) is considered a model of neurodevelopmental disorder because of the high frequency of learning deficits, especially developmental coordination disorder. In neurodevelopmental disorder, Nicolson and Fawcett formulated the hypothesis of an impaired procedural learning system that has its origins in cortico-subcortical circuits. Our aim was to investigate the relationship between cortico-striatal connectivity and procedural perceptual-motor learning performance and motor skills in NF1 children. METHODS: Seventeen NF1 and 18 typically developing children aged between 8 and 12 years old participated in the study. All were right-handed and did not present intellectual or attention deficits. In all children, procedural perceptual-motor learning was assessed using a bimanual visuo-spatial serial reaction time task (SRTT) and motor skills using the Movement Assessment Battery for Children (M-ABC). All participants underwent a resting-state functional MRI session. We used a seed-based approach to explore cortico-striatal connectivity in somatomotor and frontoparietal networks. A comparison between the groups' striato-cortical connectivity and correlations between connectivity and learning (SRTT) and motor skills (M-ABC) were performed. RESULTS: At the behavioral level, SRTT scores are not significantly different in NF1 children compared to controls. However, M-ABC scores are significantly impaired within 9 patients (scores below the 15th percentile). At the cerebral level, NF1 children present a higher connectivity in the cortico-striatal regions mapping onto the right angular gyrus compared to controls. We found that the higher the connectivity values between these regions, differentiating NF1 and controls, the lower the M-ABC scores in the whole sample. No correlation was found for the SRTT scores. CONCLUSION: NF1 children present atypical hyperconnectivity in cortico-striatal connections. The relationship with motor skills could suggest a sensorimotor dysfunction already found in children with developmental coordination disorder. These abnormalities are not linked to procedural perceptual-motor learning assessed by SRTT.


Assuntos
Destreza Motora , Neurofibromatose 1 , Criança , Corpo Estriado , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Neurofibromatose 1/complicações
11.
Cereb Cortex Commun ; 1(1): tgaa011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296090

RESUMO

Developmental dyslexia (DD) and developmental coordination disorder (DCD) are distinct diagnostic disorders. However, they also frequently co-occur and may share a common etiology. It was proposed conceptually a neural network framework that explains differences and commonalities between DD and DCD through impairments of distinct or intertwined cortico-subcortical connectivity pathways. The present study addressed this issue by exploring intrinsic cortico-striatal and cortico-cerebellar functional connectivity in a large (n = 136) resting-state fMRI cohort study of 8-12-year-old children with typical development and with DD and/or DCD. We delineated a set of cortico-subcortical functional circuits believed to be associated with the brain's main functions (visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal control, and default-mode). Next, we assessed, using general linear and multiple kernel models, whether and which circuits distinguished between the groups. Findings revealed that somatomotor cortico-cerebellar and frontoparietal cortico-striatal circuits are affected in the presence of DCD, including abnormalities in cortico-cerebellar connections targeting motor-related regions and cortico-striatal connections mapping onto posterior parietal cortex. Thus, DCD but not DD may be considered as an impairment of cortico-subcortical functional circuits.

12.
Eur J Paediatr Neurol ; 28: 89-100, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32893091

RESUMO

INTRODUCTION: NF1 children have cognitive disorders, especially in executive functions, visuospatial, and language domains, the pathophysiological mechanisms of which are still poorly understood. MATERIALS AND METHODS: A correlation study was performed from neuropsychological assessments and brain MRIs of 38 NF1 patients and 42 controls, all right-handed, aged 8-12 years and matched in age and gender. The most discriminating neuropsychological tests were selected to assess their visuospatial, metaphonological and visuospatial working memory abilities. The MRI analyses focused on the presence and location of Unidentified Bright Objects (UBOs) (1), volume analysis (2) and diffusion analysis (fractional anisotropy and mean diffusivity) (3) of the regions of interest including subcortical structures and posterior fossa, as well as shape analysis of subcortical structures (4). The level of attention, intelligence quotient, age and gender of the patients were taken into account in the statistical analysis. Then, we studied how diffusion and volumes parameters were associated with neuropsychological characteristics in NF1 children. RESULTS: NF1 children present different brain imaging characteristics compared to the control such as (1) UBOs in 68%, (2) enlarged total intracranial volume, involving all subcortical structures, especially thalamus, (3) increased MD and decreased FA in thalamus, corpus callosum and hippocampus. These alterations are diffuse, without shape involvement. In NF1 group, brain microstructure is all the more altered that volumes are enlarged. However, we fail to find a link between these brain characteristics and neurocognitive scores. CONCLUSION: While NF1 patients have obvious pathological brain characteristics, the neuronal substrates of their cognitive deficits are still not fully understood, perhaps due to complex and multiple pathophysiological mechanisms underlying this disorder, as suggested by the heterogeneity observed in our study. However, our results are compatible with an interpretation of NF1 as a diffuse white matter disease.


Assuntos
Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Encéfalo/patologia , Criança , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
13.
Cortex ; 108: 210-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30248609

RESUMO

Internal models provide a coherent framework for understanding motor behavior. Examples for the use of internal models include anticipatory postural adjustments (APAs), where the individual anticipates and cancels out the destabilizing effect of movement on body posture. Yet little is known about the functional changes in the brain supporting the development of APAs. Here, we addressed this issue by relating individual differences in APAs as assessed during bimanual load lifting to interindividual variation in brain network interactions at rest. We showed that the strength of the connectivity between three main canonical brain networks, namely the cingulo-opercular, the fronto-parietal and the somatosensory-motor networks, is an index of the ability to implement APAs from late childhood (9- to 11-year-old children). We also found an effect of age on the relationship between APAs and coupling strength between these networks, consistent with the notion that APAs are near but not yet fully mature in children. We discuss the implications of these findings for our understanding of learning disorders with impairment in predictive motor control.


Assuntos
Antecipação Psicológica/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Criança , Feminino , Força da Mão/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Adulto Jovem
14.
Res Dev Disabil ; 76: 25-34, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29547764

RESUMO

BACKGROUND AND AIM: Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. METHODS: Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. RESULTS: All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. CONCLUSION: Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities.


Assuntos
Dislexia , Transtornos das Habilidades Motoras , Destreza Motora , Músculo Esquelético/fisiopatologia , Fenômenos Biomecânicos , Criança , Desenvolvimento Infantil , Comorbidade , Dislexia/epidemiologia , Dislexia/fisiopatologia , Dislexia/psicologia , Eletromiografia/métodos , Feminino , Humanos , Masculino , Transtornos das Habilidades Motoras/epidemiologia , Transtornos das Habilidades Motoras/fisiopatologia , Transtornos das Habilidades Motoras/psicologia , Desempenho Psicomotor
15.
Geroscience ; 39(3): 305-329, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28551877

RESUMO

Alzheimer's and Parkinson's diseases are age-related progressive neurodegenerative diseases of increasing prevalence worldwide. In the absence of curative therapy, current research is interested in prevention, by identifying subtle signs of early-stage neurodegeneration. Today, the field of behavioral neuroscience has emerged as one of the most promising areas of research on this topic. Recently, it has been shown that the exacerbation of gait disorders under dual-task conditions (i.e., simultaneous performance of cognitive and motor tasks) could be a characteristic feature of Alzheimer's and Parkinson's diseases. The cognitive-motor dual-task paradigm during walking allows to assess whether (i) executive attention is abnormally impaired in prodromal Alzheimer's disease or (ii) compensation strategies are used in order to preserve gait function when the basal ganglia system is altered in prodromal Parkinson's disease. This review aims at (i) identifying patterns of dual-task-related gait changes that are specific to Alzheimer's and Parkinson's diseases, respectively, (ii) demonstrating that these changes could potentially be used as prediagnostic markers for disease onset, (iii) reviewing pros and cons of existing dual-task studies, and (iv) proposing future directions for clinical research.


Assuntos
Doença de Alzheimer , Cognição , Marcha , Doença de Parkinson , Desempenho Psicomotor , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/prevenção & controle , Atenção , Gânglios da Base/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Humanos , Memória de Curto Prazo , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Doença de Parkinson/prevenção & controle , Equilíbrio Postural , Valor Preditivo dos Testes , Medição de Risco , Análise e Desempenho de Tarefas , Caminhada
16.
Dev Cogn Neurosci ; 24: 118-128, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28314184

RESUMO

Exploration of the body representation system (BRS) from kinaesthetic illusions in fMRI has revealed a complex network composed of sensorimotor and frontoparietal components. Here, we evaluated the degree of maturity of this network in children aged 7-11 years, and the extent to which structural factors account for network differences with adults. Brain activation following tendon vibration at 100Hz ('illusion') and 30Hz ('no illusion') were analysed using the two-stage random effects model, with or without white and grey matter covariates. The BRS was already well established in children as revealed by the contrast 'illusion' vs 'no illusion', although still immature in some aspects. This included a lower level of activation in primary somatosensory and posterior parietal regions, and the exclusive activation of the frontopolar cortex (FPC) in children compared to adults. The former differences were related to structure, while the latter difference reflected a functional strategy where the FPC may serve as the 'top' in top-down modulation of the activity of the other BRS regions to facilitate the establishment of body representations. Hence, the development of the BRS not only relies on structural maturation, but also involves the disengagement of an executive region not classically involved in body processing.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Propriocepção/fisiologia , Adulto , Feminino , Humanos , Masculino
17.
Front Psychol ; 8: 1396, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861024

RESUMO

The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.

18.
Front Neurosci ; 10: 322, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471441

RESUMO

Conventional analysis of functional magnetic resonance imaging (fMRI) data using the general linear model (GLM) employs a neural model convolved with a canonical hemodynamic response function (HRF) peaking 5 s after stimulation. Incorporation of a further basis function, namely the canonical HRF temporal derivative, accounts for delays in the hemodynamic response to neural activity. A population that may benefit from this flexible approach is children whose hemodynamic response is not yet mature. Here, we examined the effects of using the set based on the canonical HRF plus its temporal derivative on both first- and second-level GLM analyses, through simulations and using developmental data (an fMRI dataset on proprioceptive mapping in children and adults). Simulations of delayed fMRI first-level data emphasized the benefit of carrying forward to the second-level a derivative boost that combines derivative and nonderivative beta estimates. In the experimental data, second-level analysis using a paired t-test showed increased mean amplitude estimate (i.e., increased group contrast mean) in several brain regions related to proprioceptive processing when using the derivative boost compared to using only the nonderivative term. This was true especially in children. However, carrying forward to the second-level the individual derivative boosts had adverse consequences on random-effects analysis that implemented one-sample t-test, yielding increased between-subject variance, thus affecting group-level statistic. Boosted data also presented a lower level of smoothness that had implication for the detection of group average activation. Imposing soft constraints on the derivative boost by limiting the time-to-peak range of the modeled response within a specified range (i.e., 4-6 s) mitigated these issues. These findings support the notion that there are pros and cons to using the informed basis set with developmental data.

19.
Age (Dordr) ; 38(4): 363-375, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27488838

RESUMO

A U-shaped relationship between cognitive demand and gait control may exist in dual-task situations, reflecting opposing effects of external focus of attention and attentional resource competition. The purpose of the study was twofold: to examine whether gait control, as evaluated from step-to-step variability, is related to cognitive task difficulty in a U-shaped manner and to determine whether age modifies this relationship. Young and older adults walked on a treadmill without attentional requirement and while performing a dichotic listening task under three attention conditions: non-forced (NF), forced-right (FR), and forced-left (FL). The conditions increased in their attentional demand and requirement for inhibitory control. Gait control was evaluated by the variability of step parameters related to balance control (step width) and rhythmic stepping pattern (step length and step time). A U-shaped relationship was found for step width variability in both young and older adults and for step time variability in older adults only. Cognitive performance during dual tasking was maintained in both young and older adults. The U-shaped relationship, which presumably results from a trade-off between an external focus of attention and competition for attentional resources, implies that higher-level cognitive processes are involved in walking in young and older adults. Specifically, while these processes are initially involved only in the control of (lateral) balance during gait, they become necessary for the control of (fore-aft) rhythmic stepping pattern in older adults, suggesting that attentional resources turn out to be needed in all facets of walking with aging. Finally, despite the cognitive resources required by walking, both young and older adults spontaneously adopted a "posture second" strategy, prioritizing the cognitive task over the gait task.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Cognição , Marcha , Adulto , Idoso , Humanos , Teste de Caminhada , Adulto Jovem
20.
Gait Posture ; 38(3): 537-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23337732

RESUMO

Humans apply a minimum intervention principle to regulate treadmill walking, rapidly correcting fluctuations in the task-relevant variable (step speed: SS) while ignoring fluctuations in the task-irrelevant variables (step time: ST; step length: SL). We examined whether the regulation of fluctuations in SS and not in ST and SL depends on high-level, executive function, processes. Young adults walked on a treadmill without a cognitive requirement and while performing the cognitive task of dichotic listening. SS fluctuations became less anti-persistent when performing dichotic listening, meaning that taxing executive function impaired the ability to rapidly correct speed deviations on subsequent steps. Conversely, performing dichotic listening had no effect on SL and ST persistent fluctuations. Findings suggest that high-level brain processes are involved only in regulating gait task-relevant variables.


Assuntos
Aceleração , Atenção/fisiologia , Função Executiva/fisiologia , Marcha/fisiologia , Adulto , Testes com Listas de Dissílabos , Teste de Esforço , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA